

MATHEMATICS FOR COMPUTER GRAPHICS

John Vince

Mathematics for
Computer Graphics
Second Edition

With 175 Illustrations

John Vince, MTech, PhD, DSc, FBCS, CEng
Media School,
University of Bournemouth, Talbot Campus, Fern Barrow, Poole BH12 5BB, UK

Library of Congress Control Number: 2005928172

ISBN-10: 1-84628-034-6
ISBN-13: 978-1-84628-034-4
ISBN 1-85233-380-4 1st edition

Printed on acid-free paper.

c© Springer-Verlag London Limited 2006

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal repsonsibility or liability for any errors or
omissions that may be made.

Printed in the United States of America. (SPI/MVY)

9 8 7 6 5 4 3 2 1

Springer Science+Business Media

springeronline.com

Dedication

I dedicate this book to my wife Annie, who has had to tolerate a year of me
reading math books in bed, on planes, boats, trains, in hotels, in the garden,
in the bath, on holiday, and probably in my sleep!

Contents

Preface xiii

1 Mathematics 1
1.1 Is Mathematics Difficult? . 2
1.2 Who should Read this Book? 2
1.3 Aims and Objectives of this Book 3
1.4 Assumptions Made in this Book 3
1.5 How to Use the Book . 3

2 Numbers 5
2.1 Natural Numbers . 5
2.2 Prime Numbers . 6
2.3 Integers . 6
2.4 Rational Numbers . 6
2.5 Irrational Numbers . 6
2.6 Real Numbers . 7
2.7 The Number Line . 7
2.8 Complex Numbers . 7
2.9 Summary . 9

3 Algebra 11
3.1 Notation . 11
3.2 Algebraic Laws . 12

3.2.1 Associative Law . 12
3.2.2 Commutative Law . 13
3.2.3 Distributive Law . 13

3.3 Solving the Roots of a Quadratic Equation 14

viii Mathematics for Computer Graphics

3.4 Indices . 15
3.4.1 Laws of Indices . 15
3.4.2 Examples . 15

3.5 Logarithms . 15
3.6 Further Notation . 16
3.7 Summary . 16

4 Trigonometry 17
4.1 The Trigonometric Ratios . 18
4.2 Example . 18
4.3 Inverse Trigonometric Ratios 19
4.4 Trigonometric Relationships 19
4.5 The Sine Rule . 20
4.6 The Cosine Rule . 20
4.7 Compound Angles . 20
4.8 Perimeter Relationships . 21
4.9 Summary . 22

5 Cartesian Coordinates 23
5.1 The Cartesian xy-plane . 23

5.1.1 Function Graphs . 24
5.1.2 Geometric Shapes . 25
5.1.3 Polygonal Shapes . 25
5.1.4 Areas of Shapes . 26
5.1.5 Theorem of Pythagoras in 2D 27

5.2 3D Coordinates . 28
5.2.1 Theorem of Pythagoras in 3D 28
5.2.2 3D Polygons . 28
5.2.3 Euler’s Rule . 29

5.3 Summary . 29

6 Vectors 31
6.1 2D Vectors . 32

6.1.1 Vector Notation . 32
6.1.2 Graphical Representation of Vectors 32
6.1.3 Magnitude of a Vector 34

6.2 3D Vectors . 34
6.2.1 Vector Manipulation 35
6.2.2 Multiplying a Vector by a Scalar 36
6.2.3 Vector Addition and Subtraction 36
6.2.4 Position Vectors . 37
6.2.5 Unit Vectors . 37
6.2.6 Cartesian Vectors . 38
6.2.7 Vector Multiplication 39
6.2.8 Scalar Product . 40

Contents ix

6.2.9 Example of the Dot Product 41
6.2.10 The Dot Product in Lighting Calculations 42
6.2.11 The Dot Product in Back-Face Detection 43
6.2.12 The Vector Product 44
6.2.13 The Right-Hand Rule 47

6.3 Deriving a Unit Normal Vector for a Triangle 47
6.4 Areas . 48

6.4.1 Calculating 2D Areas 48
6.5 Summary . 49

7 Transformation 51
7.1 2D Transformations . 51

7.1.1 Translation . 51
7.1.2 Scaling . 51
7.1.3 Reflection . 52

7.2 Matrices . 53
7.2.1 Systems of Notation 56
7.2.2 The Determinant of a Matrix 56

7.3 Homogeneous Coordinates . 57
7.3.1 2D Translation . 58
7.3.2 2D Scaling . 58
7.3.3 2D Reflections . 59
7.3.4 2D Shearing . 61
7.3.5 2D Rotation . 62
7.3.6 2D Scaling . 64
7.3.7 2D Reflections . 65
7.3.8 2D Rotation about an Arbitrary Point 65

7.4 3D Transformations . 66
7.4.1 3D Translation . 66
7.4.2 3D Scaling . 66
7.4.3 3D Rotations . 67
7.4.4 Gimbal Lock . 70
7.4.5 Rotating about an Axis 72
7.4.6 3D Reflections . 73

7.5 Change of Axes . 73
7.5.1 2D Change of Axes 74

7.6 Direction Cosines . 75
7.6.1 Positioning the Virtual Camera 77
7.6.2 Direction Cosines . 77
7.6.3 Euler Angles . 79

7.7 Rotating a Point about an Arbitrary Axis 83
7.7.1 Quaternions . 90
7.7.2 Adding and Subtracting Quaternions 91
7.7.3 Multiplying Quaternions 91
7.7.4 The Inverse Quaternion 91

x Mathematics for Computer Graphics

7.7.5 Rotating Points about an Axis 92
7.7.6 Roll, Pitch and Yaw Quaternions 95
7.7.7 Quaternions in Matrix Form 96
7.7.8 Frames of Reference 98

7.8 Transforming Vectors . 98
7.9 Determinants . 99
7.10 Perspective Projection . 103
7.11 Summary . 105

8 Interpolation 107
8.1 Linear Interpolant . 107
8.2 Non-Linear Interpolation . 110

8.2.1 Trigonometric Interpolation 110
8.2.2 Cubic Interpolation 111

8.3 Interpolating Vectors . 116
8.4 Interpolating Quaternions . 119
8.5 Summary . 121

9 Curves and Patches 123
9.1 The Circle . 123
9.2 The Ellipse . 124
9.3 Bézier Curves . 125

9.3.1 Bernstein Polynomials 125
9.3.2 Quadratic Bézier Curves 129
9.3.3 Cubic Bernstein Polynomials 130

9.4 A recursive Bézier Formula 133
9.5 Bézier Curves Using Matrices 133

9.5.1 Linear Interpolation 134
9.6 B-Splines . 137

9.6.1 Uniform B-Splines 137
9.6.2 Continuity . 139
9.6.3 Non-Uniform B-Splines 140
9.6.4 Non-Uniform Rational B-Splines 141

9.7 Surface Patches . 141
9.7.1 Planar Surface Patch 141
9.7.2 Quadratic Bézier Surface Patch 142
9.7.3 Cubic Bézier Surface Patch 144

9.8 Summary . 146

10 Analytic Geometry 147
10.1 Review of Geometry . 147

10.1.1 Angles . 148
10.1.2 Intercept Theorems 148
10.1.3 Golden Section . 149
10.1.4 Triangles . 149

Contents xi

10.1.5 Centre of Gravity of a Triangle 150
10.1.6 Isosceles Triangle 150
10.1.7 Equilateral Triangle 151
10.1.8 Right Triangle . 151
10.1.9 Theorem of Thales 152
10.1.10 Theorem of Pythagoras 152
10.1.11 Quadrilaterals . 152
10.1.12 Trapezoid . 153
10.1.13 Parallelogram . 153
10.1.14 Rhombus . 153
10.1.15 Regular Polygon (n-gon) 154
10.1.16 Circle . 154

10.2 2D Analytical Geometry . 156
10.2.1 Equation of a Straight Line 156
10.2.2 The Hessian Normal Form 158
10.2.3 Space Partitioning 159
10.2.4 The Hessian Normal Form from Two Points 160

10.3 Intersection Points . 161
10.3.1 Intersection Point of Two Straight Lines 161
10.3.2 Intersection Point of Two Line Segments 161

10.4 Point Inside a Triangle . 164
10.4.1 Area of a Triangle 164
10.4.2 Hessian Normal Form 165

10.5 Intersection of a Circle with a Straight Line 168
10.6 3D Geometry . 169

10.6.1 Equation of a Straight Line 170
10.6.2 Point of Intersection of Two Straight Lines 171

10.7 Equation of a Plane . 173
10.7.1 Cartesian Form of the Plane Equation 174
10.7.2 General Form of the Plane Equation 176
10.7.3 Parametric Form of the Plane Equation 176
10.7.4 Converting From the Parametric to the General

Form . 177
10.7.5 Plane Equation from Three Points 179

10.8 Intersecting Planes . 181
10.8.1 Intersection of Three Planes 184
10.8.2 Angle between Two Planes 186
10.8.3 Angle between a Line and a Plane 187
10.8.4 Intersection of a Line with a Plane 189

10.9 Summary . 191

11 Barycentric Coordinates 193
11.1 Ceva’s Theorem . 193
11.2 Ratios and Proportion . 195
11.3 Mass Points . 196

xii Mathematics for Computer Graphics

11.4 Linear Interpolation . 202
11.5 Convex Hull Property . 208
11.6 Areas . 209
11.7 Volumes . 217
11.8 Bézier Curves and Patches 220
11.9 Summary . 221

12 Worked Examples 223
12.1 Calculate the Area of Regular Polygon 223
12.2 Calculate the Area of any Polygon 224
12.3 Calculate the Dihedral Angle of a Dodecahedron 224
12.4 Vector Normal to a Triangle 226
12.5 Area of a Triangle using Vectors 227
12.6 General Form of the Line Equation from Two Points 227
12.7 Calculate the Angle between Two Straight Lines 228
12.8 Test If Three Points Lie on a Straight Line 229
12.9 Find the Position and Distance of the Nearest Point on a

Line to a Point . 230
12.10 Position of a Point Reflected in a Line 232
12.11 Calculate the Intersection of a Line and a Sphere 234
12.12 Calculate If a Sphere Touches a Plane 238
12.13 Summary . 239

13 Conclusion 241

References 243

Index 245

Preface

Mathematics is a beautiful subject. Its symbols, notation and abstract struc-
tures permit us to define, manipulate and resolve extremely complex problems.
The symbols by themselves, however, are meaningless – they are nothing more
than a calligraphic representation of a mental idea. If one does not understand
such symbols, then the encoded idea remains a secret.

Having spent most of my life using mathematics, I am still conscious of the
fact that I do not understand much of the notation used by mathematicians.
And even when I feel that I understand a type of notation, I still ask myself
“Do I really understand its meaning?”. For instance, I originally studied to
be an electrical engineer and was very familiar with i =

√−1, especially when
used to represent out of phase voltages and currents. I can manipulate complex
numbers with some confidence, but I must admit that I do not understand the
meaning of ii. This hole in my knowledge makes me feel uncomfortable, but
I suppose it is reassuring to learn that some of our greatest mathematicians
have had problems understanding some of their own inventions.

Some people working in computer graphics have had a rigorous grounding
in mathematics and can exploit its power to solve their problems. However, in
my experience, the majority of people have had to pick up their mathematical
skills on an ad hoc basis depending on the problem at hand. They probably
had no intention of being mathematicians, nevertheless they still need to learn
about the mathematics and apply it intelligently, which is where this book
comes in.

To begin with, this book is not for mathematicians. They would proba-
bly raise their hands in horror about the lack of mathematical rigour I have
employed, or probably not employed! This book is for people working in
computer graphics who know that they have to use mathematics in their

xiv Mathematics for Computer Graphics

day-to-day work, and don’t want to get too embroiled in axioms, truths and
Platonic realities.

The book originally appeared as part of Springer’s excellent “Essential”
series, and this new revised edition includes an extended chapter on Analyt-
ical Geometry and extra chapters on Barycentric Coordinates and Worked
Examples. The chapter on Barycentric Coordinates forced me to return to
one of my favourite books A vector Space Approach to Geometry by Melvin
Hausner. This contains a wonderful explanation of balancing masses and how
the results lead to barycentric coordinates. It also illustrates how area and vol-
ume are a natural feature of vectors. The chapter on Worked Examples draws
upon some material from my recent book Geometry for Computer Graphics.

Whilst writing this book I have borne in mind what it was like for me when
I was studying different areas of mathematics for the first time. In spite of
reading and rereading an explanation several times it could take days before
“the penny dropped” and a concept became apparent. Hopefully, the reader
will find the following explanations useful in developing their understanding
of these specific areas of mathematics.

John Vince
Ringwood

1
Mathematics

When I was taught mathematics at junior school in the late 1950s, there
were no computers or calculators. Calculations, whether they were addition,
subtraction, multiplication, division or square roots, had to be worked out in
one’s head or with pencil and paper. We learnt our ‘times tables’ by reciting
them over and over again until we could give the product of any pair of
numbers up to 12 – numbers higher than 12 were computed long hand.

I was fortunate in having a teacher who appreciated the importance of
mathematics, and without knowing it at the time, I began a journey into a
subject area that would eventually bring my knowledge of mathematics to life
in computer graphics.

Today, students have access to calculators that are virtually miniature
computers. They are programmable and can even display graphs on small LCD
screens. Unfortunately, the policy pursued by some schools has ensured that
generations of children are unable to compute simple arithmetic operations
without the aid of a calculator. I believe that such children have been disadvan-
taged, as they are unable to visualize the various patterns that exist in num-
bers such as odd numbers (1, 3, 5, 7, . . .), even numbers (2, 4, 6, 8, . . .), prime
numbers (2, 3, 5, 7, 11, . . .), squares (1, 4, 9, 16, 25, . . .) and Fibonacci numbers
(0, 1, 1, 2, 3, 5, 8, . . .). They will not know that it is possible to multiply a two-
digit number, such as 17, by 11, simply by adding 1 to 7 and placing the result
in the middle to make 187.

Although I do appreciate the benefits of calculators, I believe that they
are introduced into the curriculum far too early. Children should be given the
opportunity to develop a sense of number, and the possibility of developing a
love for mathematics, before they discover the tempting features of a digital
calculator.

2 Mathematics for Computer Graphics

‘I am no good at mathematics’ is a common response from most people
when asked about their mathematical abilities. Some suggest that their brain
is unable to cope with numbers, some claim that it’s boring, and others put it
down to inadequate teaching. Personally, I am not very good at mathematics,
but I delight in reading books about mathematicians and the history of math-
ematics, and applying mathematics to solve problems in computer graphics.
I am easily baffled by pages of abstract mathematical symbols, but readily
understand the application of mathematics in a practical context.

It was only when I started programming computers to produce drawings
and pictures that I really appreciated the usefulness of mathematics. Multi-
plication became synonymous with scaling; division created perspective; sines
and cosines rotated objects; tangents produced shearing, and geometry and
trigonometry provided the analytical tools to solve all sorts of other problems.
Such a toolkit is readily understood and remembered.

1.1 Is Mathematics Difficult?

‘Is mathematics difficult?’ I suppose that there is no real answer to this ques-
tion, because it all depends upon what we mean by ‘mathematics’ and ‘diffi-
cult’. But if the question is rephrased slightly: ‘Is the mathematics of computer
graphics difficult?’ then the answer is a definite no. What’s more, I believe
that the subject of computer graphics can instill in someone a love for math-
ematics. Perhaps ‘love’ is too strong a word, but I am convinced that it is
possible to ‘make friends’ with mathematics.

For me, mathematics should be treated like a foreign language: You only
need to learn an appropriate vocabulary to survive while visiting another
country. If you attempt to memorize an extended vocabulary, and do not
put it into practice, it is highly likely that you will forget it. Mathematics is
the same. I know that if I attempted to memorize some obscure branch of
mathematics, such as vector calculus, I would forget it within days if I did
not put it to some practical use.

Fortunately, the mathematics needed for computer graphics is reasonably
simple and covers only a few branches such as algebra, trigonometry, vectors,
geometry, transforms, interpolation, curves and patches. Although these topics
do have an advanced side to them, in most applications we only need to explore
their intermediate levels.

1.2 Who should Read this Book?

I have written this book as a reference for anyone intending to study topics
such as computer graphics, computer animation, computer games or virtual
reality, especially for people who want to understand the technical aspects.

1 Mathematics 3

Although it is possible to study these topics without requiring the support
of mathematics, increasingly, there are situations and projects that require
animators, programmers and technical directors to resort to mathematics to
resolve unforeseen technical problems. This may be in the form of a script or
an extra piece of program code.

1.3 Aims and Objectives of this Book

One of the aims of this book is to bring together a range of useful mathematical
topics that are relevant to computer graphics. And the real objective is to
provide programmers and animators with an understanding of mathematics
so that they can solve all sorts of problems with confidence.

I have attempted to do this by exploring a range of mathematical top-
ics, without intimidating the reader with mathematical symbols and abstract
ideas. Hopefully, I will be able to explain each topic in a simple and practical
manner, with a variety of practical examples.

This is far from being an exhaustive study of the mathematics associated
with computer graphics. Each chapter introduces the reader to a new topic,
and should leave the reader confident and capable of studying more advanced
books.

1.4 Assumptions Made in this Book

I suppose that I do expect that readers will have some understanding of arith-
metic and a general knowledge of the principles of mathematics, such as the
ideas of algebra. But, apart from that, each subject will be introduced as
though it were the first time it had been discovered.

In the chapter on curves and surfaces I have used a little calculus. Readers
who have not studied this subject should not be concerned about missing
some vital piece of information. I only included it to keep the explanation
complete.

1.5 How to Use the Book

I would advise starting at the beginning and proceeding chapter by chapter.
Where a subject seems familiar, just jump ahead until a challenge is discov-
ered. Once you have read the book, keep it handy so that you can refer to it
when the occasion arises.

Although I have tried to maintain a sequence to the mathematical ideas,
so that one idea leads to another, in some cases this has proved impossible.
For example, determinants are referred to in the chapter on vectors, but they

4 Mathematics for Computer Graphics

are described in detail in the next chapter on transforms. Similarly, the later
chapter on analytic geometry contains some basic ideas of geometry, but its
position was dictated by its use of vectors. Consequently, on some occasions,
the reader will have to move between chapters to read about related topics.

2
Numbers

All sorts of number system have been proposed by previous civilizations, but
our current system is a positional number system using a base 10. The number
1234 really means the sum of one thousand, plus two hundreds, plus three tens,
plus four ones, which can be expressed as 1×1000+2×100+3×10+4×1. It
should be obvious that the base 10 is nothing special, it just so happens that
human beings have evolved with 10 digits, which we use for counting. This
suggests that any number can be used as a base: 2, 3, 4, 5, 6, 7, etc. In fact,
the decimal number system is not very convenient for computer technology,
where electronic circuits switch on and off billions of times a second using
binary numbers – numbers to a base 2 – with great ease. In this text there is
no real need to explore such numbers. This can be left to programmers who
have to master number systems such as binary (base 2), octal (base 8) and
hexadecimal (base 16).

The only features of numbers we have to revise in this chapter are the
families of numbers that exist, what they are used for, and any problems
that arise when they are stored in a computer. Let’s begin with the natural
numbers.

2.1 Natural Numbers

The natural numbers {0, 1, 2, 3, 4, . . .} are used for counting, ordering and
labelling. Note that negative numbers are not included. We often use natural
numbers to subscript a quantity to distinguish one element from another, e.g.
x1, x2, x3, x4, . . .

6 Mathematics for Computer Graphics

2.2 Prime Numbers

A natural number that can be divided only by 1 and itself, without leaving
a remainder, is called a prime number. Examples are {2, 3, 5, 7, 11, 13, 17}.
There are 25 primes less than 100, 168 primes less than 1000 and 455 052 512
primes less than 10 000 000 000. The fundamental theory of arithmetic states,
‘Any positive integer (other than 1) can be written as the product of prime
numbers in one and only one way.’ For example, 25 = 5× 5; 26 = 2× 13; 27 =
3×3×3; 28 = 2×2×7; 29 = 29; 30 = 2×3×5 and 92 365 = 5×7×7×13×29.

In 1742 Christian Goldbach conjectured that every even integer greater
than 2 could be written as the sum of two primes:

4 = 2 + 2
14 = 11 + 3
18 = 11 + 7, etc.

No one has ever found an exception to this conjecture, and no one has ever
proved it.

Although prime numbers are enigmatic and have taxed the brains of
the greatest mathematicians, unfortunately they play no part in computer
graphics!

2.3 Integers

Integers include negative numbers, as follows: {. . .−3,−2,−1, 0, 1, 2, 3, 4, . . .}.

2.4 Rational Numbers

Rational or fractional numbers are numbers that can be represented as a
fraction. For example, 2,

√
16, 0.25 are rational numbers because

2 =
4
2
,

√
16 = 4 =

8
2
, 0.25 =

1
4

Some rational numbers can be stored accurately inside a computer,
but many others can only be stored approximately. For example, 4/3 =
1.333 333 . . . produces an infinite sequence of threes and has to be truncated
when stored as a binary number.

2.5 Irrational Numbers

Irrational numbers cannot be represented as fractions. Examples are
√

2 =
1.414 213 562 . . . , π = 3.141 592 65 . . . and e = 2.718 281 828 . . . Such numbers

2 Numbers 7

−3 −2 −1 0 1 2 3

Fig. 2.1. The number line.

never terminate and are always subject to a small error when stored within a
computer.

2.6 Real Numbers

Rational and irrational numbers together comprise the real numbers.

2.7 The Number Line

It is convenient to organize numbers in the form of an axis to give them a
spatial significance. Figure 2.1 shows such a number line, which forms an axis
as used in graphs and coordinate systems. The number line also helps us
understand complex numbers, which are the ‘king’ of all numbers.

2.8 Complex Numbers

Leonhard Euler (1707–1783) (whose name rhymes with boiler) played a sig-
nificant role in putting complex numbers on the map. His ideas on rotations
are also used in computer graphics to locate objects and virtual cameras in
space, as we shall see later on.

Complex numbers resolve some awkward problems that arise when we
attempt to solve certain types of equations. For example, x2 − 4 = 0 has
solutions x = ±2. But x2 +4 = 0 has no obvious solutions using real or integer
numbers. However, the number line provides a graphical interpretation for a
new type of number, the complex number. The name is rather misleading: it
is not complex, it is rather simple.

Consider the scenario depicted in Figure 2.2. Any number on the number
line is related to the same number with the opposite sign via an anti-clockwise
rotation of 180◦. For example, if 3 is rotated 180◦ about zero it becomes −3,
and if −2 is rotated 180◦ about zero it becomes 2.

We can now write −3 = (−1)×3, or 2 = (−1)×−2, where −1 is effectively
a rotation through 180◦. But a rotation of 180◦ can be interpreted as two
consecutive rotations of 90◦, and the question now arises: What does a rotation
of 90◦ signify? Well, let’s assume that we don’t know what the answer is going
to be – even though some of you do – we can at least give a name to the
operation, and what better name to use than i.

8 Mathematics for Computer Graphics

−4 −1 0 1 2 3 4−3 −2

Fig. 2.2. Rotating numbers through 180◦ reverses their sign.

So the letter i represents an anticlockwise rotation of 90◦. Therefore i2 is
equivalent to lifting 2 out of the number line, rotating it 90◦ and leaving it
hanging in limbo. But if we take this ‘imaginary ’ number and subject it to a
further 90◦ rotation, i.e. ii2, it becomes −2. Therefore, we can write ii2 = −2,
which means that ii = −1. But if this is so, i =

√−1!
This gives rise to two types of number: real numbers and complex num-

bers. Real numbers are the everyday numbers we use for counting and so on,
whereas complex numbers have a mixture of real and imaginary components,
and help resolve a wide range of mathematical problems.

Figure 2.3 shows how complex numbers are represented: the horizontal
number line represents the real component, and the vertical number line rep-
resents the imaginary component.

For example, the complex number P (1 + i2) in Figure 2.3 can be rotated
90◦ to Q by multiplying it by i. However, we must remember that ii = −1:

i(1 + i2) = i1 + ii2
= i1 − 2
= −2 + i1

Q(−2 + i1) can be rotated another 90◦ to R by multiplying it by i:

i(−2 + i1) = i(−2) + ii1
= −i2 − 1
= −1 − i2

R(−1 − i2) in turn, can be rotated 90◦ to S by multiplying it by i:

i(−1 − i2) = i(−1) − ii2
= −i1 + 2
= 2 − i1

2 Numbers 9

imaginary
component

P(1 + i2)

Q(−2 + i1)

S(2− i1)

R(−1 − i2)

−2 −1 1 2

i2

i1

−i1

−i2

real
component

Fig. 2.3. The graphical representation of complex numbers.

Finally, S(2 − i1) can be rotated 90◦ to P by multiplying it by i:

i(2 − i1) = i2 − ii1
= i2 + 1
= 1 + i2

Although we rarely use complex numbers in computer graphics, we can
see that they are intimately related to Cartesian coordinates, and that the
ordered pair (x, y) ≡ x + iy.

Before concluding this chapter, I cannot fail to include the famous equation
discovered by Euler:

eiπ + 1 = 0 (2.1)

which integrates 0, 1, e, π and i in a simple and beautiful arrangement, and
is on a par with Einstein’s e = mc2.

2.9 Summary

This short chapter made sure that the terminology of numbers was under-
stood, and now provides a good link into the basics of algebra.

3
Algebra

This chapter reviews the basic elements of algebra to prepare the reader for
the algebraic manipulations used in later chapters. Although algebra can be a
very abstract mathematical tool, here we only need to explore those practical
features relevant to its application to computer graphics.

3.1 Notation

The word ‘algebra’ comes from the Arabic al-jabr w’al-muqabal, meaning
‘restoration and reduction’. Today’s algebraic notation has evolved over thou-
sands of years during which different civilizations have developed ways of
annotating mathematical and logical problems. In retrospect, it does seem
strange that centuries passed before the ‘equals’ sign (=) was invented and
concepts such as ‘zero’ (ce 876) were introduced, especially as they now seem
so important. But we are not at the end of this evolution, because new forms
of annotation and manipulation will continue to emerge as new mathematical
ideas are invented.

One fundamental concept of algebra is the idea of giving a name to an
unknown quantity. For example, m is often used to represent the slope of a
2D line, and c is the line’s y-coordinate where it intersects the y-axis. René
Descartes (1596–1650) formalized the idea of using letters from the beginning
of the alphabet (a, b, c, etc.) to represent arbitrary numbers, and letters at the
end of the alphabet (p, q, r, s, t, . . . x, y, z) to identify variables representing
quantities such as pressure (p), temperature (t), and coordinates (x, y, z).

With the aid of the basic arithmetic operators +,−,×,÷ we can develop
expressions that describe the behaviour of a physical process or a specific

12 Mathematics for Computer Graphics

computation. For example, the expression ax+by−d equals zero for a straight
line. The variables x and y are the coordinates of any point on the line and
the values of a, b, d determine the position and orientation of the line. There
is an implied multiplication between ax and by, which would be expressed as
a∗x and b∗y if we were using a programming language.

The = sign permits the line equation to be expressed as a self-evident
statement: 0 = ax + by − d. Such a statement implies that the expressions
on the left- and right-hand sides of the = sign are ‘equal’ or ‘balanced’. So
whatever is done to one side must also be done to the other in order to
maintain equality or balance. For example, if we add d to both sides, the
straight-line equation becomes d = ax + by. Similarly, we could double or
treble both expressions, divide them by 4, or add 6, without disturbing the
underlying relationship.

Algebraic expressions also contain a wide variety of other notation, such as

√
x square root of x

n
√

x nth root of x
xn x to the power n
sin(x) sine of x
cos(x) cosine of x
tan(x) tangent of x
log(x) logarithm of x
ln(x) natural logarithm of x

Parentheses are used to isolate part of an expression in order to select
a sub-expression that is manipulated in a particular way. For example, the
parentheses in c(a+b)+d ensure that the variables a and b are added together
before being multiplied by c and finally added to d.

3.2 Algebraic Laws

There are three basic laws that are fundamental to manipulating algebraic
expressions: associative, commutative and distributive. In the following de-
scriptions, the term binary operation represents the arithmetic operations +,−
or ×, which are always associated with a pair of numbers or variables.

3.2.1 Associative Law

The associative law in algebra states that when three or more elements are
linked together through a binary operation, the result is independent of how
each pair of elements is grouped. The associative law of addition is

a + (b + c) = (a + b) + c (3.1)

e.g. 1 + (2 + 3) = (1 + 2) + 3

3 Algebra 13

and the associative law of multiplication is

a × (b × c) = (a × b) × c (3.2)

e.g. 1 × (2 × 3) = (1 × 2) × 3
Note that substraction is not associative:

a − (b − c) �= (a − b) − c (3.3)

e.g. 1 − (2 − 3) �= (1 − 2) − 3

3.2.2 Commutative Law

The commutative law in algebra states that when two elements are linked
through some binary operation, the result is independent of the order of the
elements. The commutative law of addition is

a + b = b + a (3.4)

e.g. 1 + 2 = 2 + 1
and the commutative law of multiplication is

a × b = b × a (3.5)

e.g. 2 × 3 = 3 × 2
Note that subtraction is not commutative:

a − b �= b − a (3.6)

e.g. 2 − 3 �= 3 − 2

3.2.3 Distributive Law

The distributive law in algebra describes an operation which when performed
on a combination of elements is the same as performing the operation on
the individual elements. The distributive law does not work in all cases of
arithmetic. For example, multiplication over addition holds:

a × (b + c) = ab + ac (3.7)

e.g. 3 × (4 + 5) = 3 × 4 + 3 × 5
whereas addition over multiplication does not:

a + (b × c) �= (a + b) × (a + c) (3.8)

e.g. 3 + (4 × 5) �= (3 + 4) × (3 + 5)
Although most of these laws seem to be natural for numbers, they do

not necessarily apply to all mathematical constructs. For instance, the vector
product, which multiplies two vectors together, is not commutative.

14 Mathematics for Computer Graphics

3.3 Solving the Roots of a Quadratic Equation

To put the above laws and notation into practice, let’s take a simple example
to illustrate the logical steps in solving a problem. The task involves solving
the roots of a quadratic equation, i.e. those values of x that make the equation
equal zero.

Given the quadratic equation where a �= 0:

ax2 + bx + c = 0

Step 1 : subtract c from both sides:

ax2 + bx = −c

Step 2 : divide both sides by a:

x2 +
b

a
x = − c

a

Step 3 : add
b2

4a2 to both sides:

x2 +
b

a
x +

b2

4a2 = − c

a
+

b2

4a2

Step 4 : factorize the left side:(
x +

b

2a

)2

= − c

a
+

b2

4a2

Step 5 : make 4a2 the common denominator for the right side:(
x +

b

2a

)2

=
−4ac + b2

4a2

Step 6 : take the square root of both sides:

x +
b

2a
=

±√
b2 − 4ac

2a

Step 7 : subtract
b

2a
from both sides:

x =
±√

b2 − 4ac

2a
− b

2a

Step 8 : rearrange the right side:

x =
−b ±√

b2 − 4ac

2a
(3.9)

This last expression gives the roots for any quadratic equation.

3 Algebra 15

3.4 Indices

A notation for repeated multiplication is with the use of indices. For instance,
in the above example with a quadratic equation x2 is used to represent x×x.
This notation leads to a variety of situations where laws are required to explain
how the result is to be computed.

3.4.1 Laws of Indices

The laws of indices can be expressed as

am × an = am+n (3.10)
am ÷ an = am−n (3.11)

(am)n = amn (3.12)

which are easily verified using some simple examples.

3.4.2 Examples

1 : 23 × 22 = 8 × 4 = 32 = 25

2 : 24 ÷ 22 = 16 ÷ 4 = 4 = 22

3 : (22)3 = 64 = 26

From the above laws, it is evident that

a0 = 1 (3.13)

a−p =
1
ap

(3.14)

a
p
q = q

√
ap (3.15)

3.5 Logarithms

Two people are associated with the invention of logarithms: John Napier
(1550–1617) and Joost Bürgi (1552–1632). Both men were frustrated by the
time they spent multiplying numbers together, and both realized that multi-
plication could be replaced by addition using logarithms. Logarithms exploit
the addition and subtraction of indices shown in (3.10) and (3.11), and are
always associated with a base. For example, if ax = n, then loga n = x, where
a is the base. A concrete example brings the idea to life:

if 102 = 100 then log10 100 = 2

which can be interpreted as ‘10 has to be raised to the power (index) 2 to
equal 100’. The log operation finds the power of the base for a given number.

16 Mathematics for Computer Graphics

Thus a multiplication can be translated into an addition using logs:

36 × 24 = 864

log10 36 + log10 24 = log10 864

1.55630250077 + 1.38021124171 = 2.93651374248

In general, the two bases used in calculators and computer software are
10 and 2.718281846 The latter is e, a transcendental number. (A tran-
scendental number is not a root of any algebraic equation. Joseph Liouville
proved the existence of such numbers in 1844. π, the ratio of the circumfer-
ence of a circle to its diameter, is another example.) To distinguish one type
of logarithm from the other, logarithms to the base 10 are written as log, and
logarithms to the base e are written as ln.

From the above notation, it is evident that

log(ab) = log a + log b (3.16)

log
(a

b

)
= log a − log b (3.17)

log(an) = n log a (3.18)

log(n
√

a) =
1
n

log a (3.19)

The following formula is useful to convert from the base 10 to the base e:

log a = ln a × log e = 0.4343ln a (3.20)

3.6 Further Notation

Mathematicians use all sorts of symbols to substitute for natural language
expressions. Here are some examples:

< less than
> greater than
≤ less than or equal to
≥ greater than or equal to∼= approximately equal to
≡ equivalent to
�= not equal to

For example, 0 ≤ t ≤ 1 can be interpreted as: 0 is less than or equal to t,
which is less than or equal to 1. Basically, this means t varies between 0 and 1.

3.7 Summary

The above description of algebra should be sufficient for the reader to under-
stand the remaining chapters. However, one should remember that this is only
the beginning of a very complex subject.

4
Trigonometry

When we split the word ‘trigonometry’ into its constituent parts, ‘tri ’ ‘gon’
‘metry ’, we see that it is to do with the measurement of three-sided poly-
gons, i.e. triangles. It is a very ancient subject, and one the reader requires
to understand for the analysis and solution of problems in computer
graphics.

Trigonometric functions arise in vectors, transforms, geometry, quater-
nions and interpolation, and in this chapter we will survey some of the basic
features with which the reader should be familiar.

The measurement of angles is at the heart of trigonometry, and two units of
angular measurement have survived into modern usage: degrees and radians.
The degree (or sexagesimal) unit of measure derives from defining one com-
plete rotation as 360◦. Each degree divides into 60 minutes, and each minute
divides into 60 seconds. The number 60 has survived from Mesopotamian days
and is rather incongruous when used alongside today’s decimal system – which
is why the radian has secured a strong foothold in modern mathematics.

The radian of angular measure does not depend on any arbitrary constant.
It is the angle created by a circular arc whose length is equal to the circle’s
radius. And because the perimeter of a circle is 2πr, 2π radians correspond to
one complete rotation. As 360◦ correspond to 2π radians, 1 radian corresponds
to 180/π◦, which is approximately 57.3◦.

The reader should try to memorize the following relationships between
radians and degrees:

π

2
= 90◦, π = 180◦,

3π

2
= 270◦, 2π = 360◦

18 Mathematics for Computer Graphics

adjacent

hypotenuse
opposite

b

Fig. 4.1. Labeling a right-angle triangle for the trigonometric ratios.

4.1 The Trigonometric Ratios

Ancient civilizations knew that triangles, whatever their size, possessed some
inherent properties, especially the ratios of sides and their associated angles.
This meant that if such ratios were known in advance, problems involving
triangles with unknown lengths and angles could be computed using these
ratios.

To give you some idea why we employ the current notation, consider the
history of the word sine. The Hindu word ardhajya meaning ‘half-chord’ was
abbreviated to jya (‘chord’), which was translated by the Arabs into jiba,
and corrupted to jb. Other translators converted this to jaib, meaning ‘cove’,
‘bulge’ or ‘bay’, which in Latin is sinus.

Today, the trigonometric ratios are commonly known by the abbreviations
sin, cos, tan, cosec, sec and cot. Figure 4.1 shows a right-angled triangle where
the trigonometric ratios are given by

sin(β) =
opposite

hypotenuse
cos(β) =

adjacent

hypotenuse
tan(β) =

opposite

adjacent

cosec(β) =
1

sin(β)
sec(β) =

1
cos(β)

cot(β) =
1

tan(β)

The sin and cos functions have limits ±1, whereas tan has limits ±∞. The
signs of the functions in the four quadrants are

+ +
− −

− +
− +

− +
+ −

sin cos tan

4.2 Example

Figure 4.2 shows a triangle where the hypotenuse and one angle are known.
The other sides are calculated as follows:

h

10
= sin(50◦)

4 Trigonometry 19

h

b

10

50�

Fig. 4.2. h and b are unknown.

h = 10 sin(50◦) = 10 × 0.76601

h = 7.66

b

10
= cos(50◦)

b = 10 cos(50◦) = 10 × 0.64279

b = 6.4279

4.3 Inverse Trigonometric Ratios

As every angle has its associated ratio, functions are required to convert one
into the other. The sin, cos and tan functions convert angles into ratios, and
the inverse functions sin−1, cos−1 and tan−1 convert ratios into angles. For
example, sin(45◦) = 0.707, therefore sin−1(0.707) = 45◦. Although the sin and
cos functions are cyclic functions (i.e. they repeat indefinitely) the inverse
functions return angles over a specific period.

4.4 Trigonometric Relationships

There is an intimate relationship between the sin and cos definitions, and the
are formally related by

cos(β) = sin(β + 90◦)

Also, the theorem of Pythagoras can be used to derive other formulae such as

sin(β)
cos(β)

= tan(β)

sin2(β) + cos2(β) = 1

1 + tan2(β) = sec2(β)

1 + cot2(β) = cosec2(β)

20 Mathematics for Computer Graphics

A

b

C
a

B
c

Fig. 4.3. An arbitrary triangle.

4.5 The Sine Rule

The sine rule relates angles and side lengths for a triangle. Figure 4.3 shows a
triangle labelled such that side a is opposite angle A, side b is opposite angle
B, etc.

The sine rule states

a

sin A
=

b

sin B
=

c

sin C

4.6 The Cosine Rule

The cosine rule expresses the sin2(β) + cos2(β) = 1 relationship for the arbi-
trary triangle shown in Figure 4.3. In fact, there are three versions:

a2 = b2 + c2 − 2bc cos(A)

b2 = c2 + a2 − 2ca cos(B)

c2 = a2 + b2 − 2ab cos(C)

Three further relationships also hold:

a = b cos(C) + c cos(B)

b = c cos(A) + a cos(C)

c = a cos(B) + b cos(A)

4.7 Compound Angles

Two sets of compound trigonometric relationships show how to add and sub-
tract two different angles and multiples of the same angle. The following are
some of the most common relationships:

sin(A ± B) = sin(A) cos(B) ± cos(A) sin(B)

4 Trigonometry 21

cos(A ± B) = cos(A) cos(B) ∓ sin(A) sin(B)

tan(A ± B) =
tan(A) ± tan(B)

1 ∓ tan(A) tan(B)

sin(2β) = 2 sin(β) cos(β)

cos(2β) = cos2(β) − sin2(β)

cos(2β) = 2 cos2(β) − 1

cos(2β) = 1 − 2 sin2(β)

sin(3β) = 3 sin(β) − 4 sin3(β)

cos(3β) = 4 cos3(β) − 3 cos(β)

cos2(β) =
1
2
(1 + cos(2β))

sin2(β) =
1
2
(1 − cos(2β))

4.8 Perimeter Relationships

Finally, referring back to Figure 4.3, we come to the relationships that inte-
grate angles with the perimeter of a triangle:

S =
1
2
(a + b + c)

sin
(

A

2

)
=

√
(s − b)(s − c)

bc

sin
(

B

2

)
=

√
(s − c)(s − a)

ca

sin
(

C

2

)
=

√
(s − a)(s − b)

ab

cos
(

A

2

)
=

√
s(s − a)

bc

cos
(

B

2

)
=

√
s(s − b)

ca

cos
(

C

2

)
=

√
s(s − c)

ab

22 Mathematics for Computer Graphics

sin(A) =
2
bc

√
s(s − a)(s − b)(s − c)

sin(B) =
2
ca

√
s(s − a)(s − b)(s − c)

sin(C) =
2
ab

√
s(s − a)(s − b)(s − c)

4.9 Summary

No derivation has been given for the formulae in this chapter, but the reader
who is really interested will find plenty of books that show their origins.
Hopefully, the formulae will be a useful reference when studying the rest
of the book, and perhaps will be of some use when solving problems in the
future.

I should draw the reader’s attention to two maths books that I have found
a source of information and inspiration: Handbook of Mathematics and Com-
putational Science by John Harris and Horst Stocker (1998), and Mathematics
from the Birth of Numbers by Jan Gullberg (1997).

5
Cartesian Coordinates

René Descartes (1596–1650) is often credited with the invention of the
xy-plane, but Pierre de Fermat (1601–1665) was probably the first inventor. In
1636 Fermat was working on a treatise titled Ad locus planos et solidos isagoge,
which outlined what we now call analytic geometry. Unfortunately, Fermat
never published his treatise, although he shared his ideas with other math-
ematicians such as Blaise Pascal (1623–1662). At the same time Descartes
devised his own system of analytic geometry and in 1637 published his results
in the prestigious journal Géométrie. In the eyes of the scientific world, the
publication date of a technical paper determines when a new idea or invention
is released into the public domain. Consequently, ever since this publication
Descartes has been associated with the xy-plane, which is why it is called the
Cartesian plane. If Fermat had been more efficient in publishing his research
results, the xy-plane would have been called the Fermatian plane! (Boyer and
Merzbach, 1989).

5.1 The Cartesian xy-plane

The Cartesian xy-plane provides a mechanism for translating pairs of related
variables into a graphical format. The variables are normally x and y, as used
to describe a function such as y = 3x+2. Every value of x has a corresponding
value of y, which can be located on intersecting axes as shown in Figure 5.1.
The set of points forms a familiar straight line associated with equations of
the form y = mx+c. By convention, the axis for the independent variable x is
horizontal, and the dependent variable y is vertical. The axes intersect at 90◦

at a point called the origin. As previously mentioned, Descartes suggested
that the letters x and y should be used to represent variables, and letters

24 Mathematics for Computer Graphics

+X−X

+Y

−Y

Fig. 5.1. The equation y = 3x + 2 using the xy Cartesian plane.

at the other end of the alphabet should substitute numbers. Which is why
equations such as y = ax2 + bx + c are written the way they are.

Measurements to the right and left of the origin are positive and negative
respectively, and measurements above and below the origin share a similar
sign convention. Together, the axes are said to create a left-handed set of
axes, because it is possible, using one’s left hand, to align the thumb with the
x -axis and the first finger with the y-axis. We will say more about left and
right-handed axes in Chapter 6.

The Cartesian plane is such a simple idea that it is strange it took so long
to be discovered. But even though it was invented almost 400 years ago, it
is central to computer graphics. However, although it is true that Descartes
showed how an orthogonal coordinate system could be used for graphs and
coordinate geometry, coordinates had been used by ancient Egyptians, almost
2000 years earlier!

Any point P on the Cartesian plane is identified by an ordered pair of
numbers (x, y) where x and y are called the Cartesian coordinates of P.
Mathematical functions and geometric shapes can then be represented as lists
of coordinates inside a program.

5.1.1 Function Graphs

A wide variety of functions, such as y = mx + c (linear), y = ax2 + bx + c
(quadratic), y = ax3 + bx2 + cx + d (cubic), y = a sin(x) (trigonometric),
etc. create familiar graphs that readily identify the function’s origins. Linear
functions are straight lines, quadratics are parabolas, cubics have an ‘s’ shape,
and trigonometric functions often have a wave-like trace. Such graphs are used

5 Cartesian Coordinates 25

br
ig

ht
ne

ss

2 4 6 8 1012 141618 20 22 24 26 28 3032

frames

Fig. 5.2. A function curve relating brightness to frame number.

in computer animation to control the movement of objects, lights and the
virtual camera. But instead of depicting the relationship between x and y, the
graphs show the relationship between an activity such as movement, rotation,
size, brightness, colour, etc., with time. Figure 5.2 shows an example where
the horizontal axis marks the progress of time in animation frames, and the
vertical axis records the corresponding brightness of a virtual light source.
Such a function forms part of the animator’s user interface, and communicates
in a very intuitive manner the brightness of the light source for every frame
of animation. The animator can then make changes to the function with the
aid of interactive software tools.

5.1.2 Geometric Shapes

Computer graphics requires that 2D shapes and 3D objects have a numerical
description of some sort. Shapes can include polygons, circles, arbitrary curves,
mathematical functions, fractals, etc., and objects can be faceted, smooth,
bumpy, furry, gaseous, etc. For the moment, though, we will only consider 2D
shapes.

5.1.3 Polygonal Shapes

A polygon is constructed from a sequence of vertices (points) as shown in
Figure 5.3. A straight line is assumed to link each pair of neighbouring ver-
tices; intermediate points on the line are not explicitly stored. There is no
convention for starting a chain of vertices, but software will often dictate
whether polygons have a clockwise or anti-clockwise vertex sequence. If the
vertices in Figure 5.3 had been created in an anti-clockwise sequence, they
could be represented in a tabular form as shown, where the starting vertex is
(1, 1), but this is arbitrary.

26 Mathematics for Computer Graphics

1,3

1,1 3, 1

3,2
x y

1
3
3
1

1
1
2
3

X

y

Fig. 5.3. A simple polygon created with four vertices shown in the table.

We can now subject this list of vertex coordinates to a variety of arith-
metic and mathematical operations. For example, if we double the values of
x and y and redraw the vertices, we discover that the form of the shape is
preserved, but its size is doubled with respect to the origin. Similarly, if we
divide the values of x and y by 2, the shape is still preserved, but its size is
halved with respect to the origin. On the other hand, if we add 1 to every
x -coordinate and 2 to every y-coordinate and redraw the vertices, the shape’s
size remains the same but it is displaced 1 unit horizontally and 2 units verti-
cally. This arithmetic manipulation of vertices is the basis of shape and object
transformations and is described in Chapter 7.

5.1.4 Areas of Shapes

The area of a polygonal shape is readily calculated from its chain of coordi-
nates. For example, given the following list of coordinates:

x y

x0 y0
x1 y1
x2 y2
x3 y3

the area is computed by

1
2
[(x0y1 − x1y0) + (x1y2 − x2y1) + (x2y3 − x3y2) + (x3y0 − x0y3)] (5.1)

If you check to see what is happening, you will notice that the calculation
sums the results of multiplying an x by the next y, minus the next x by the
current y. When the last vertex is selected it is paired with the first vertex to
complete the process. The result is then halved to reveal the area.

5 Cartesian Coordinates 27

x1 x2

y1

y2

∆y

∆x

P1

P2

d

Y

X

Fig. 5.4. Calculating the distance between two points.

As a simple test, let’s apply (5.1) to the shape described in Figure 5.3:

1
2
[(1 × 1 − 3 × 1) + (3 × 2 − 3 × 1) + (3 × 3 − 1 × 2) + (1 × 1 − 1 × 3)]

1
2
[−2 + 3 + 7 − 2] = 3

which by inspection, is the true area. The beauty of this technique is that it
works with any number of vertices and any arbitrary shape. In Chapter 6 we
will discover how it works.

Another feature of the technique is that if the original set of coordinates
is clockwise, the area is negative. Which means that the calculation computes
vertex sequence as well as area. To illustrate this feature, the original vertices
are reversed to a clockwise sequence as follows:

1
2
[(1 × 3 − 1 × 1) + (1 × 2 − 3 × 3) + (3 × 1 − 3 × 2) + (3 × 1 − 1 × 1)]

1
2
[2 − 7 − 3 + 2] = −3

The minus sign indicates that the vertices are in a clockwise sequence.

5.1.5 Theorem of Pythagoras in 2D

We can calculate the distance between two points by applying the theorem of
Pythagoras. Figure 5.4 shows two arbitrary points P1(x1, y1) and P2(x2, y2).
The distance ∆x = x2−x1 and ∆y = y2−y1 Therefore, the distance d between
P1 and P2 is given by

d =
√

∆x2 + ∆y2 (5.2)

28 Mathematics for Computer Graphics

(a) (b)
X XZ Z

YY

Fig. 5.5. (a) A left-handed system. (b) A right-handed system.

5.2 3D Coordinates

In the 2D Cartesian plane a point is located by its x - and y-coordinates. But
when we move to 3D there are two choices for positioning the third z -axis.
Figure 5.5 shows the two possibilities, which are described as left- and right-
handed axial systems. The left-handed system allows us to align our left hand
with the axes such that the thumb aligns with the x -axis, the first finger aligns
with the y-axis and the middle finger aligns with the z -axis. The right-handed
system allows the same system of alignment, but using our right hand. The
choice between these axial systems is arbitrary, but one should be aware of
the system employed by commercial computer graphics packages. The main
problem arises when projecting 3D points onto a 2D plane, which, in general,
has a left-handed axial system. This will become obvious when we look at
perspective projections. In this text we will keep to a right-handed system as
shown in Figure 5.6, which also shows a point P with its coordinates.

5.2.1 Theorem of Pythagoras in 3D

The theorem of Pythagoras in 3D is a natural extension of the 2D rule. In fact,
it even works in higher dimensions. Given two arbitrary points P1(x1, y1, z1)
and P2(x2, y2, z2), the distance ∆x = x2 − x1,∆y = y2 − y1 and ∆z = z2 − z1.
Therefore, the distance d between P1 and P2 is given by

d =
√

∆x2 + ∆y2 + ∆z2 (5.3)

5.2.2 3D Polygons

The simplest 3D polygon is a triangle, which is always planar, i.e. the three ver-
tices lie on a unique plane. Planarity is very important in computer graphics
because rendering algorithms assume that polygons are planar. For instance,
it is quite easy to define a quadrilateral in 3D where the vertices are not lo-
cated on one plane. When such a polygon is rendered and animated, spurious
highlights can result, simply because the geometric techniques (which assume
the polygon is planar) give rise to errors.

5 Cartesian Coordinates 29

x z X

y

P

Y

Z

Fig. 5.6. A right-handed axial system showing the coordinates of a point P.

5.2.3 Euler’s Rule

In 1619, Descartes discovered quite a nice relationship between vertices, edges
and the faces of a 3D polygonal object:

faces + vertices = edges + 2 (5.4)

As a simple test, consider a cube; it has 12 edges, 6 faces and 8 vertices, which
satisfies this equation. This rule can be applied to a geometric database to dis-
cover whether it contains any spurious features. Unfortunately for Descartes,
for some unknown reason, the rule is named after Euler!

5.3 Summary

The Cartesian plane and its associated coordinates are the basis for all math-
ematics used for computer graphics. We will see in following chapters how
shapes can be manipulated using simple functions, and how the plane can be
extended into a 3D Cartesian space that becomes the domain for creating ob-
jects, curves, surfaces, and a virtual environment where they can be animated
and visualized.

6
Vectors

Vectors are a relatively new arrival to the world of mathematics, dating only
from the 19th century. They provide us with some elegant and powerful tech-
niques for computing angles between lines and the orientation of surfaces.
They also provide a coherent framework for computing the behaviour of dy-
namic objects in computer animation and illumination models in rendering.

We often employ a single number to represent quantities that we use in our
daily lives such as, height, age, shoe size, waist and chest measurements. The
magnitude of this number depends on our age and whether we use metric or
imperial units. Such quantities are called scalars. In computer graphics scalar
quantities include colour, height, width, depth, brightness, number of frames,
etc.

On the other hand, there are some things that require more than one
number to represent them: wind, force, weight, velocity and sound are just
a few examples. These cannot be represented accurately by a single number.
For example, any sailor knows that wind has a magnitude and a direction.
The force we use to lift an object also has a value and a direction. Similarly,
the velocity of a moving object is measured in terms of its speed (e.g. miles
per hour) and a direction such as north-west. Sound, too, has intensity and a
direction. These quantities are called vectors. In computer graphics, vectors
are generally made of two or three numbers, and this is the only type we will
consider in this chapter.

Mathematicians such as Caspar Wessel (1745–1818), Jean Argand (1768–
1822) and John Warren (1796–1852) were simultaneously exploring complex
numbers and their graphical representation. In 1837, Sir William Rowan
Hamilton (1788–1856) made his breakthrough with quaternions. In 1853,
Hamilton published his book Lectures on Quaternions in which he described
terms such as vector, transvector and provector. Hamilton’s work was not

32 Mathematics for Computer Graphics

widely accepted until 1881, when the American mathematician Josiah Gibbs
(1839–1903) published his treatise Vector Analysis, describing modern vector
analysis.

6.1 2D Vectors

In computer graphics we employ 2D and 3D vectors. In this chapter we
first consider vector notation in a 2D context and then extrapolate the ideas
into 3D.

6.1.1 Vector Notation

A scalar such as x is just a name for a single numeric quantity. However,
because a vector contains two or more numbers, its symbolic name is printed
using a bold font to distinguish it from a scalar variable. Examples are n, i
and Q.

When a scalar variable is assigned a value we employ the standard algebraic
notation

x = 3

However, when a vector is assigned its numeric values, the following notation
is used:

n =
[

3
4

]

which is called a column vector. The numbers 3 and 4 are called the compo-
nents of n, and their position within the brackets is significant. A row vector
transposes the components horizontally, n = [3 4]T where the superscriptT

reminds us of the transposition.

6.1.2 Graphical Representation of Vectors

Because vectors have to encode direction as well as magnitude, an arrow
could be used to indicate direction and a number to specify magnitude. Such
a scheme is often used in weather maps. Although this is a useful graphical
interpretation for such data, it is not practical for algebraic manipulation.

Cartesian coordinates provide an excellent mechanism for visualizing vec-
tors and allowing them to be incorporated within the classical framework of
mathematics. Figure 6.1 shows a vector represented by a short line segment.
The length of the line represents the vector’s magnitude, and the orienta-
tion defines its direction. But as you can see from the figure, the line does
not have a direction. Even if we attach an arrowhead to the line, which is
standard practice for annotating vectors in books and scientific papers, the
arrowhead has no mathematical reality.

6 Vectors 33

Y

X

Fig. 6.1. A vector represented by a short line segment. However, although the vector
has magnitude, it does not have direction.

r

s

Y
3

2

1

1 2 3 X

(x2, y2)

(x3, y3)(x1, y1)

(x4, y4)

Fig. 6.2. Two vectors r and s have the same magnitude and opposite directions.

The line’s direction can be determined by first identifying the vector’s tail
and then measuring its components along the x - and y-axes. For example,
in Figure 6.2 the vector r has its tail defined by (x1, y1) = (1, 2) and its
head by (x2, y2) = (2, 3). Vector s, on the other hand, has its tail defined by
(x3, y3) = (2, 2) and its head by (x4, y4) = (1, 1). The x - and y-components
for r are computed as follows:

xr = (x2 − x1) yr = (y2 − y1)
xr = 2 − 1 = 1 yr = 3 − 2 = 1

whereas the components for s are computed as follows:

xs = (x4 − x3) ys = (y4 − y3)
xs = 1 − 2 = −1 ys = 1 − 2 = −1
xs = −1 ys = −1

It is the negative values of xs and ys that encode the vector’s direction. In
general, given that the coordinates of a vector’s head and tail are (xh, yh) and

34 Mathematics for Computer Graphics

X

Y

Fig. 6.3. Eight vectors, whose coordinates are shown in Table 6.1.

(xt, yt) respectively, its components ∆x and ∆y are given by

∆x = (xh − xt) ∆y = (yh − yt) (6.1)

One can readily see from this notation that a vector does not have a unique
position in space. It does not matter where we place a vector: so long as we
preserve its length and orientation, its components will not alter.

6.1.3 Magnitude of a Vector

The magnitude of a vector r is expressed by ‖r‖ and is computed by applying
the theorem of Pythagoras to its components:

||r|| =
√

∆x2 + ∆y2 (6.2)

To illustrate these ideas, consider a vector defined by (xh, yh) = (3, 4) and
(xt, yt) = (1, 1). The x - and y-components are 2 and 3 respectively. Therefore
its magnitude is equal to

√
22 + 32 = 3.606

Figure 6.3 shows various vectors, and their properties are listed in
Table 6.1.

6.2 3D Vectors

The above vector examples are in 2D, but it is extremely simple to extend
this notation to embrace an extra dimension. Figure 6.4 shows a 3D vector r
with its head, tail, components and magnitude annotated. The components
and magnitude are given by

∆x = (xh − xt) (6.3)

6 Vectors 35

Table 6.1. Values associated with the vectors shown in
Fig. 6.3

xh yh xt yt ∆x ∆y ‖Vector‖
2 0 0 0 2 0 2
0 2 0 0 0 2 2

−2 0 0 0 −2 0 2
0 −2 0 0 0 −2 2
1 1 0 0 1 1

√
2

−1 1 0 0 −1 1
√

2
−1 −1 0 0 −1 −1

√
2

1 −1 0 0 1 −1
√

2

Y
Ph

Pt

Z X

z
x

y
r

Fig. 6.4. The 3D vector has components ∆x,∆y, ∆z, which are the differences be-
tween the head and tail coordinates.

∆y = (yh − yt) (6.4)
∆z = (zh − zt) (6.5)

||r|| =
√

∆x2 + ∆y2 + ∆z2 (6.6)

As 3D vectors play a very important part in computer animation, all future
examples will be three-dimensional.

6.2.1 Vector Manipulation

As vectors are different from scalars, a set of rules has been developed to
control how the two mathematical entities interact with one another. For
instance, we need to consider vector addition, subtraction and multiplication,
and how a vector can be modified by a scalar. Let’s begin with multiplying a
vector by a scalar.

36 Mathematics for Computer Graphics

6.2.2 Multiplying a Vector by a Scalar

Given a vector n, 2n means that the vector’s components are doubled. For
example, if

n =

⎡
⎣ 3

4
5

⎤
⎦ then 2n =

⎡
⎣ 6

8
10

⎤
⎦

which seems logical. Similarly, if we divide n by 2, its components are halved.
Note that the vector’s direction remains unchanged – only its magnitude
changes.

It is meaningless to consider the addition of a scalar to a vector such as
n+2, for it is not obvious which component of n is to be increased by 2. If all
the components of n have to be increased by 2, then we simply add another
vector whose components equal 2.

6.2.3 Vector Addition and Subtraction

Given vectors r and s, r ± s is define as

r =

⎡
⎣ xr

yr

zr

⎤
⎦ s =

⎡
⎣ xs

ys

zs

⎤
⎦ r ± s =

⎡
⎣ xr ± xs

yr ± ys

zr ± zs

⎤
⎦ (6.7)

Vector addition is commutative:

a + b = b + a (6.8)

e.g.

⎡
⎣ 1

2
3

⎤
⎦ +

⎡
⎣ 4

5
6

⎤
⎦ =

⎡
⎣ 4

5
6

⎤
⎦ +

⎡
⎣ 1

2
3

⎤
⎦ =

⎡
⎣ 5

7
9

⎤
⎦

However, like scalar subtraction, vector subtraction is not commutative:

a − b �= b − a

e.g.

⎡
⎣ 4

5
6

⎤
⎦ −

⎡
⎣ 1

2
3

⎤
⎦ �=

⎡
⎣ 1

2
3

⎤
⎦ −

⎡
⎣ 4

5
6

⎤
⎦

a − b �= b − a (6.9)

Let’s illustrate vector addition and subtraction with two examples. Figure
6.5 shows the graphical interpretation of adding two vectors r and s. Note
that the tail of vector s is attached to the head of vector r. The resultant
vector t = r + s is defined by adding the corresponding components of r and
s together. Figure 6.6 shows a graphical interpretation for r − s. This time the
components of vector s are reversed to produce an equal and opposite vector.
Then it is attached to r and added as described above.

6 Vectors 37

r

s
r + s

Y

Z X

Fig. 6.5. Vector addition r + s.

Z

r − s

r

s

− s

X

Y

Fig. 6.6. Vector subtraction r− s.

6.2.4 Position Vectors

Given any point P(x, y, z), a position vector p can be created by assuming
that P is the vector’s head and the origin is its tail. Because the tail coor-
dinates are (0, 0, 0) the vector’s components are x, y, z. Consequently, the
vector’s magnitude ||p|| equals

√
x2 + y2 + z2. For example, the point P(4, 5,

6) creates a position vector p relative to the origin:

p =

⎡
⎣ 4

5
6

⎤
⎦ ||p|| =

√
42 + 52 + 62 = 20.88

We will see how position vectors are used in Chapter 8 when we consider
analytical geometry.

6.2.5 Unit Vectors

By definition, a unit vector has a magnitude of 1. A simple example is i where

i =

⎡
⎣ 1

0
0

⎤
⎦ ||i|| = 1

38 Mathematics for Computer Graphics

Unit vectors are extremely useful when we come to vector multiplication. As
we shall discover later, multiplication of vectors involves taking their magni-
tude, and if this is unity, the multiplication is greatly simplified. Furthermore,
in computer graphics applications vectors are used to specify the orientation
of surfaces, the direction of light sources and the virtual camera. Again, if
these vectors have a unit length, the computation time associated with vector
operations can be minimized.

Converting a vector into a unit form is called normalizing and is achieved
by dividing a vector’s components by its magnitude. To formalize this process,
consider a vector r whose components are x, y, z. The magnitude ||r|| =√

x2 + y2 + z2 and the unit form of r are given by

ru =
1

||r||

⎡
⎣ x

y
z

⎤
⎦ (6.10)

This process can be confirmed by showing that the magnitude of ru is 1:

||ru|| =

√(
x

‖r‖
)2

+
(

y

‖r‖
)2

+
(

z

‖r‖
)2

=
1

||r||
√

x2 + y2 + z2 = 1

To put this into context, consider the conversion of r into a unit form:

r =

⎡
⎣ 1

2
3

⎤
⎦

||r|| =
√

12 + 22 + 32 =
√

14

ru =
1√
14

⎡
⎣ 1

2
3

⎤
⎦ =

⎡
⎣ 0.267

0.535
0.802

⎤
⎦

6.2.6 Cartesian Vectors

Now that we have considered the scalar multiplication of vectors, vector ad-
dition and unit vectors, we can combine all three to permit the algebraic
manipulation of vectors. To begin with, we will define three Cartesian unit
vectors i, j, k that are aligned with the x -, y- and z -axes respectively:

i =

⎡
⎣ 1

0
0

⎤
⎦, j =

⎡
⎣ 0

1
0

⎤
⎦, k =

⎡
⎣ 0

0
1

⎤
⎦ (6.11)

Therefore any vector aligned with the x-, y- or z -axes can be defined by a scalar
multiple of the unit vectors i, j and k respectively. For example, a vector 10

6 Vectors 39

units long aligned with the x -axis is simply 10i, and a vector 20 units long
aligned with the z -axis is 20k. By employing the rules of vector addition and
subtraction, we can compose a vector r by adding three Cartesian vectors as
follows:

r = ai + bj + ck (6.12)

This is equivalent to writing r as

r =

⎡
⎣ a

b
c

⎤
⎦ (6.13)

which means that the magnitude of r is readily computed as

||r|| =
√

a2 + b2 + c2 (6.14)

Any pair of Cartesian vectors such as r and s can be combined as follows:

r = ai + bj + ck (6.15)

s = di + ej + fk (6.16)

r ± s = (a ± d)i + (b ± e)j + (c ± f)k (6.17)

For example, given

r = 2i + 3j + 4k and s = 5i + 6j + 7k

then r + s = 7i + 9j + 11k

and
||r + s|| =

√
72 + 92 + 112 =

√
251 = 15.84

6.2.7 Vector Multiplication

Although vector addition and subtraction are useful in resolving various prob-
lems, vector multiplication provides some powerful ways of computing angles
and surface orientations.

The multiplication of two scalars is very familiar: for example, 6×7 or 7×
6 = 42. We often visualize this operation, as a rectangular area where 6 and
7 are the dimensions of a rectangle’s sides, and 42 is the area. However, when
we consider the multiplication of vectors we are basically multiplying two 3D
lines together, which is not an easy operation to visualize.

Mathematicians have discovered that there are two ways to multiply vec-
tors together: one gives rise to a scalar result and the other a vector result.
We will start with the scalar product.

40 Mathematics for Computer Graphics

6.2.8 Scalar Product

We could multiply two vectors r and s by using the product of their magni-
tudes: ||r|| · ||s||. Although this is a valid operation, it does not get us any-
where because it ignores the orientation of the vectors, which is one of their
important features. The concept, however, is readily developed into a useful
operation by including the angle between the vectors.

Figure 6.7 shows two vectors r and s that have been drawn, for conve-
nience, such that their tails touch. Taking s as the reference vector, which is
an arbitrary choice, we compute the projection of r on s, which takes into
account their relative orientation. The length of r on s is ||r|| cos(β). We can
now multiply the magnitude of s by the projected length of r : ||s||·||r|| cos(β).
This scalar product is written

s · r = ||s|| · ||r|| cos(β) (6.18)

The dot symbol ‘·’ is used to represent scalar multiplication, to distinguish
it from the vector product, which, we will discover, employs a ‘×’ symbol.
Because of this symbol, the scalar product is often referred to as the dot
product.

So far we have only defined what we mean by the dot product. We now
need to find out how to compute it. Fortunately, everything is in place to
perform this task. To begin with, we define two Cartesian vectors r and s,
and proceed to multiply them together using the dot product definition:

r = ai + bj + ck (6.19)
s = di + ej + fk (6.20)

therefore
r · s = (ai + bj + ck) · (di + ej + fk)

= ai · (di + ej + fk) +
bj·(di + ej + fk) +
ck·(di + ej + fk)

r

Y

s

XZ

b

Fig. 6.7. The projection of r on s creates the basis for the scaler product.

6 Vectors 41

r · s = ad(i · i) + ae(i · j) + af(i · k) +
bd(j · i) + be(j · j) + bf(j · k) +
cd(k · i) + ce(k · j) + cf(k · k) (6.21)

Before we proceed any further, we can see that we have created various dot
product terms such as (i · i), (j · j), (k · k), etc. These terms can be di-
vided into two groups: those that involve the same unit vector, and those that
reference different unit vectors.

Using the definition of the dot product, terms such as (i · i), (j · j) and
(k · k) = 1, because the angle between i and i, j and j, or k and k is 0◦; and
cos(0◦) = 1. But because the other vector combinations are separated by 90◦,
and cos(90◦) = 0, all remaining terms collapse to zero. Bearing in mind that
the magnitude of a unit vector is 1, we can write

||s|| · ||r|| cos(β) = ad + be + cf (6.22)

This result confirms that the dot product is indeed a scalar quantity. Now
let’s see how it works in practice.

6.2.9 Example of the Dot Product

To find the angle between two vectors r and s,

r =

⎡
⎣ 2

−3
4

⎤
⎦ and s =

⎡
⎣ 5

6
10

⎤
⎦

||r|| =
√

22 + (−3)2 + 42 = 5.385

||s|| =
√

52 + 62 + 102 = 12.689

Therefore

||s|| · ||r|| cos(β) = 2 × 5 + (−3) × 6 + 4 × 10 = 32

12.689 × 5.385 × cos(β) = 32

cos(β) =
32

12.689 × 5.385
= 0.468

β = cos−1(0.468) = 62.1◦

The angle between the two vectors is 62.1◦.
It is worth pointing out at this stage that the angle returned by the dot

product ranges between 0◦ and 180◦. This is because, as the angle between
two vectors increases beyond 180◦, the returned angle β is always the smallest
angle associated with the geometry.

42 Mathematics for Computer Graphics

6.2.10 The Dot Product in Lighting Calculations

Lambert’s law states that the intensity of illumination on a diffuse surface is
proportional to the cosine of the angle between the surface normal vector and
the light source direction. This arrangement is shown in Figure 6.8. The light
source is located at (20, 20, 40) and the illuminated point is (0, 10, 0).

In this situation we are interested in calculating cos(β), which when mul-
tiplied by the light source intensity gives the incident light intensity on the
surface. To begin with, we are given the normal vector n to the surface. In
this case n is a unit vector, and its magnitude ‖n‖ = 1:

n =

⎡
⎣ 0

1
0

⎤
⎦

The direction of the light source from the surface is defined by the vector s:

s =

⎡
⎣ 20 − 0

20 − 10
40 − 0

⎤
⎦ =

⎡
⎣ 20

10
40

⎤
⎦

||s|| =
√

202 + 102 + 402 = 45.826

||n|| · ||s|| cos(β) = 0 × 20 + 1 × 10 + 0 × 40 = 10

1 × 45.826 × cos(β) = 10

cos(β) =
10

45.826
= 0.218

Therefore the light intensity at the point (0, 10, 0) is 0.218 of the original
light intensity at (20, 20, 40). This does not take into account the attenuation
due to the inverse-square law of light propagation.

n

b

Light
source

s

Fig. 6.8. Lambert’s law states that the intensity of illumination on a diffuse surface
is proportional to the cosine of the angle between the surface normal vector and the
light source direction.

6 Vectors 43

6.2.11 The Dot Product in Back-Face Detection

A standard way of identifying back-facing polygons relative to the virtual
camera is to compute the angle between the polygon’s surface normal and the
line of sight between the camera and the polygon. If this angle is less than
90◦ the polygon is visible; if it is equal to or greater than 90◦ the polygon is
invisible. This geometry is shown in Figure 6.9. Although it is obvious from
Figure 6.9 that the right-hand polygon is invisible to the camera, let’s prove
algebraically that this is so. Let the camera be located at (0,0,0) and the
polygon’s vertex is (10, 10, 40). The normal vector is [5 5 − 2]T

n =

⎡
⎣ 5

5
−2

⎤
⎦

||n|| =
√

52 + 52 + (−2)2 = 7.348

The camera vector c is

c =

⎡
⎣ 0 − 10

0 − 10
0 − 40

⎤
⎦ =

⎡
⎣ −10

−10
−40

⎤
⎦

||c|| =
√

(−10)2 + (−10)2 + (−40)2 = 42.426

therefore

||n|| · ||c|| cos(β) = 5 × (−10) + 5 × (−10) + (−2) × (−40)

7.348 × 42.426 × cos(β) = −20

cos(β) =
−20

7.348 × 42.426
= −0.0634

β = cos−1(−0.0634) = 93.635◦

which shows that the polygon is invisible.

< 90� > 90�

visible

invisiblecamera

Fig. 6.9. The angle between the surface normal and the camera’s line of sight deter-
mines the polygon’s visibility.

44 Mathematics for Computer Graphics

6.2.12 The Vector Product

As mentioned above, there are two ways to obtain the product of two vectors.
The first is the scalar product, and the second is the vector product, which is
also called the cross product because of the ‘×’ symbol used in its notation. It
is based on the definition that two vectors r and s can be multiplied together
to produce a third vector t:

r × s = t (6.23)

where ||t|| = ||r|| · ||s|| sin(β), and β is the angle between r and s.
We will discover that the vector t is normal (90◦) to the plane containing

the vectors r and s. This makes it an ideal way of computing the surface
normal to a polygon. Once again, let’s define two vectors and proceed to
multiply them together:

r = ai + bj + ck (6.24)
s = di + ej + fk (6.25)

r × s = (ai + bj + ck) × (di + ej + fk)
= ai × (di + ej + fk) + bj × (di + ej + fk) + ck

×(di + ej + fk)
r × s = ad(i × i) + ae(i × j) + af(i × k) + bd(j × i) + be(j × j)

+bf(j × k) + cd(k × i) + ce(k × j) + cf(k × k) (6.26)

As we found with the dot product, there are two groups of vector terms: those
that reference the same unit vector, and those that reference two different unit
vectors.

Using the definition for the cross product, operations such as (i× i), (j× j)
and (k × k) result in a vector whose magnitude is 0. This is because the
angle between the vectors is 0◦, and sin(0◦) = 0. Consequently these terms
disappear and we are left with

r × s = ae(i × j) + af(i × k) + bd(j × i) + bf(j × k) + cd(k × i) + ce(k × j)

(6.27)

The mathematician Sir William Rowan Hamilton struggled for many years
when working on quaternions to resolve the meaning of the above result. What
did the products mean? He assumed that i× j = k, j×k = i and k× i = j, but
he also thought that j× i = k,k× j = i and i× k = j. But this did not work!
One day in 1843, when he was out walking, thinking about this problem, he
thought the impossible: i × j = k, but j × i = −k, j × k = i, but k × j = −i,
and k× i = j, but i×k = −j. To his surprise, this worked, but it contradicted
the commutative multiplication law of scalars where 6 × 7 = 7 × 6. We now

6 Vectors 45

accept that vectors do not obey all the rules of scalars, which is an interesting
result.

Proceeding, then, with Hamilton’s rules, we reduce the cross product terms
of (6.27) to

r × s = ae(k) + af(−j) + bd(−k) + bf(i) + cd(j) + ce(−i)
= (bf − ce)i + (cd − af)j + (ae − bd)k (6.28)

We now modify the middle term to create a symmetric result:

r × s = (bf − ce)i − (af − cd)j + (ae − bd)k (6.29)

If this is written in determinant form we get

r × s =
∣∣∣∣ b c

e f

∣∣∣∣ i −
∣∣∣∣ a c

d f

∣∣∣∣ j +
∣∣∣∣ a b

d e

∣∣∣∣k (6.30)

where the determinants provide the scalar for each unit vector. We will dis-
cover later that the determinant of a 2 × 2 matrix is the difference between
the products of the diagonal terms.

Although it may not be obvious, there is a simple elegance to this result,
which enables the cross product to be calculated very quickly. To derive the
cross product we write the vectors in the correct sequence. Remember that
r × s does not equal s × r. First take r × s:

r = ai + bj + ck

s = di + ej + fk (6.31)

The scalar multiplier for i is (bf − ec). This is found by ignoring the i com-
ponents and looking at the scalar multipliers of j and k.

The scalar multiplier for −j is (af − dc). This is found by ignoring the j
components and looking at the i and k scalars.

The scalar multiplier for k is (ae − db). This is found by ignoring the k
components and looking at the i and j scalars.

Let’s illustrate this with some examples. First we confirm that the vector
product works with the unit vectors, i, j and k.

Therefore

i × j = (0 × 0 − 1 × 0)i − (1 × 0 − 0 × 0)j + (1 × 1 − 0 × 0)k
= k

j × k = (1 × 1 − 0 × 0)i − (0 × 1 − 0 × 0)j + (0 × 0 − 0 × 1)k
= i

k × i = (0 × 0 − 0 × 1)i − (0 × 0 − 1 × 1)j + (0 × 0 − 1 × 0)k
= j

46 Mathematics for Computer Graphics

Let’s now consider two vectors r and s and compute the normal vector t.
The vectors will be chosen so that we can anticipate approximately the answer.
Figure 6.10 shows the vectors r and s and the normal vector t. Table 6.2
contains the coordinates of the vertices forming the two vectors.

r =

⎡
⎣ x3 − x2

y3 − y2
z3 − z2

⎤
⎦ s =

⎡
⎣ x1 − x2

y1 − y2
z1 − z2

⎤
⎦

r = −i + j

s = −i + k

r × s = (1 × 1 − 0 × 0)i − (−1 × 1 − (−1) × 0)j
+(−1 × 0 − (−1) × 1)k

= i + j + k

This confirms what we expected from Figure 6.10. Let’s now reverse the vec-
tors to illustrate the importance of vector sequence:

s = −i + k

r = −i + j

r

n3

n2n1

Y

t

s

Z X

Fig. 6.10. The vector t is normal to the vectors r and s.

Table 6.2. Coordinates of the vertices used
in Fig. 6.10.

Vertex x y z

v1 0 0 1
v2 1 0 0
v3 0 1 0

6 Vectors 47

s × r = (0 × 0 − 1 × 1)i − (−1 × 0 − (−1) × 1)j
+(−1 × 1 − (−1) × 0)k

= −i − j − k

which is in the opposite direction to r × s.

6.2.13 The Right-Hand Rule

The right-hand rule is an aide mémoire for working out the orientation of
the cross product vector. Given the operation r × s, if the right-hand thumb
is aligned with r, the first finger with s, and the middle finger points in the
direction of t.

6.3 Deriving a Unit Normal Vector for a Triangle

Figure 6.11 shows a triangle with vertices defined in an anti-clockwise sequence
from its visible side. This is the side we want the surface normal to point
upwards. Using the following information we will compute the surface normal
using the cross product and then convert it to a unit normal vector.
Create vector r between v1 and v3, and vector s between v2 and v3:

r = −i + j

s = −i + 2k
r × s = t = (1 × 2 − 0 × 0)i − (−1 × 2 − 0 ×−1)j

+(−1 × 0 − 1 ×−1)k
t = 2i + 2j + k

||t|| =
√

22 + 22 + 12 = 3

tu =
2
3
i +

2
3
j +

1
3
k

The unit vector tu can now be used in illumination calculations, and as it has
unit length, dot product calculations are simplified.

r t

s

V1 (0, 2, 2)

V3 (1, 1, 2)
V2 (0, 1, 4)

Y

XZ

Fig. 6.11. The normal vector t is derived from the cross product r× s.

48 Mathematics for Computer Graphics

X

Y

h

s

rb

Fig. 6.12. The area of the parallelogram formed by two vectors r and s equals ||r|| ·
||s|| sin β.

6.4 Areas

Before we leave the cross product let’s investigate the physical meaning of
‖r‖ · ‖s‖ sin(β). Figure 6.12 shows two 2D vectors, r and s. The height h =
‖s‖ sin(β), therefore the area of the parallelogram is

||r||h = ||r|| · ||s|| sin(β) (6.32)

But this is the magnitude of the cross product vector t. Thus when we calcu-
late r×s, the length of the normal vector t equals the area of the parallelogram
formed by r and s. Which means that the triangle formed by halving the par-
allelogram is half the area.

area of parallelogram = ||t|| (6.33)

area of triangle =
1
2
||t|| (6.34)

This means that it is a relatively easy exercise to calculate the surface area
of an object constructed from triangles or parallelograms. In the case of a
triangulated surface, we simply sum the magnitudes of the normals and halve
the result.

6.4.1 Calculating 2D Areas

Figure 6.13 shows three vertices of a triangle P0(x0, y0), P1(x1, y1) and P2(x2, y2)
formed in an anti-clockwise sequence. We can imagine that the triangle exists
on the z = 0 plane, therefore the z-coordinates are zero.

6 Vectors 49

Y

X

P0

P1

P2

r

s

Fig. 6.13. The area of the triangle formed by the vectors r and s is half the magnitude
of their cross product.

The vectors r and s are computed as follows:

r =

⎡
⎣ x1 − x0

y1 − y0
0

⎤
⎦ s =

⎡
⎣ x2 − x0

y2 − y0
0

⎤
⎦ (6.35)

r = (x1 − x0)i + (y1 − y0)j (6.36)
s = (x2 − x0)i + (y2 − y0)j (6.37)

||r × s|| = (x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0)
= x1(y2 − y0) − x0(y2 − y0) − x2(y1 − y0) + x0(y1 − y0)
= x1y2 − x1y0 − x0y2 − x0y0 − x2y1 + x2y0 + x0y1 − x0y0

= x1y2 − x1y0 − x0y2 − x2y1 + x2y0 + x0y1

= (x0y1 − x1y0) + (x1y2 − x2y1) + (x2y0 − x0y2) (6.38)

But the area of the triangle formed by the three vertices is 1
2‖r×s‖. Therefore

area =
1
2
[(x0y1 − x1y0) + (x1y2 − x2y1) + (x2y0 − x0y2)] (6.39)

which is the formula disclosed in Chapter 2!

6.5 Summary

Even if you already knew something about vectors, I hope this chapter has
introduced some new ideas and illustrated the role vectors play in computer
graphics.

7
Transformation

Transformations are used to scale, translate, rotate, reflect and shear shapes
and objects. And, as we shall discover shortly, it is possible to effect this by
changing their coordinate values.

Although algebra is the basic notation for transformations, it is also possi-
ble to express them as matrices, which provide certain advantages for viewing
the transformation and for interfacing to various types of computer graphics
hardware. We begin with an algebraic approach and then introduce matrix
notation.

7.1 2D Transformations

7.1.1 Translation

Cartesian coordinates provide a one-to-one relationship between number and
shape, such that when we change a shape’s coordinates, we change its geome-
try. For example, if P (x, y) is a vertex on a shape, when we apply the operation
x′ = x + 3 we create a new point P ′(x′, y) three units to the right. Similarly,
the operation y′ = y + 1 creates a new point P ′(x, y′) displaced one unit ver-
tically. By applying both of these transforms to every vertex to the original
shape, the shape is displaced as shown in Figure 7.1.

7.1.2 Scaling

Shape scaling is achieved by multiplying coordinates as follows:

x′ = 2x
y′ = 1.5y (7.1)

52 Mathematics for Computer Graphics

Original

Translated

X

Y

Fig. 7.1. The translated shape results by adding 3 to every x-coordinate, and 1 to
every y-coordinate of the original shape.

Fig. 7.2. The scaled shape results by multiplying every x-coordinate by 2 and every
y-coordinate by 1.5.

This transform results in a horizontal scaling of 2 and a vertical scaling of
1.5, as illustrated in Figure 7.2. Note that a point located at the origin does
not change its place, so scaling is relative to the origin.

7.1.3 Reflection

To make a reflection of a shape relative to the y-axis, we simply reverse the
sign of the x -coordinate, leaving the y-coordinate unchanged

x′ = −x

y′ = y (7.2)

7 Transformation 53

X

Y

Original

Fig. 7.3. The top right-hand shape can give rise to the three reflections simply by
reversing the signs of coordinates.

and to reflect a shape relative to the x -axis we reverse the y-coordinates:

x′ = x

y′ = −y (7.3)

Examples of reflections are shown in Figure 7.3.
Before proceeding, we pause to introduce matrix notation so that we can

develop further transformations using algebra and matrices simultaneously.

7.2 Matrices

Matrix notation was investigated by the British mathematician Arthur Cayley
around 1858. Caley formalized matrix algebra, along with the American math-
ematicians Benjamin and Charles Pierce. Also, by the start of the 19th century
Carl Gauss (1777–1855) had proved that transformations were not commuta-
tive, i.e. T1 × T2 �= T2 × T1, and Caley’s matrix notation would clarify such
observations. For example, consider the transformation T1:

T1
x′ = ax + by

y′ = cx + dy
(7.4)

54 Mathematics for Computer Graphics

and another transformation T2 that transforms T1:

T2 × T1
x′′ = Ax′ + By′

y′′ = Cx′ + Dy′ (7.5)

If we substitute the full definition of T1 we get

T2 × T1
x′′ = A(ax + by) + B(cx + dy)

y′′ = C(ax + by) + D(cx + dy)
(7.6)

which simplifies to

T2 × T1
x′′ = (Aa + Bc)x + (Ab + Bd)y

y′′ = (Ca + Dc)x + (Cb + Dd)y
(7.7)

Caley proposed separating the constants from the variables, as follows:

T1

[
x′

y′

]
=

[
a b

c d

]
·
[

x

y

]
(7.8)

where the square matrix of constants in the middle determines the trans-
formation. The algebraic form is recreated by taking the top variable x′,
introducing the = sign, and multiplying the top row of constants [a b] in-
dividually by the last column vector containing x and y. We then examine
the second variable y′, introduce the = sign, and multiply the bottom row of
constants [c d] individually by the last column vector containing x and y, to
create

x′ = ax + by

y′ = cx + dy (7.9)

Using Caley’s notation, the product T2 × T1 is[
x′′

y′′

]
=

[
A B

C D

]
·
[

x′

y′

]
(7.10)

But the notation also intimated that[
x′′

y′′

]
=

[
A B

C D

]
·
[

a b

c d

]
·
[

x

y

]
(7.11)

and when we multiply the two inner matrices together they must produce

x′′ = (Aa + Bc)x + (Ab + Bd)y

y′′ = (Ca + Dc)x + (Cb + Dd)y (7.12)

or in matrix form[
x′′

y′′

]
=

[
Aa + Bc Ab + Bd

Ca + Dc Cb + Dd

]
·
[

x

y

]
(7.13)

7 Transformation 55

otherwise the two systems of notation will be inconsistent. This implies that[
Aa + Bc Ab + Bd

Ca + Dc Cb + Dd

]
=

[
A B

C D

]
·
[

a b

c d

]
(7.14)

which demonstrates how matrices must be multiplied. Here are the rules for
matrix multiplication:

Aa+Bc
= •

A B a

c

1 The top left-hand corner element Aa + Bc is the product of the top row of
the first matrix by the left column of the second matrix.

Ab+Bd
= •

A B b

d

2 The top right-hand element Ab + Bd is the product of the top row of the
first matrix by the right column of the second matrix.

Ca+Dc
= •

C D

a

c

3 The bottom left-hand element Ca + Dc is the product of the bottom row
of the first matrix by the left column of the second matrix.

Cb+Dd
= •

C D

b

d

4 The bottom right-hand element Cb+Dd is the product of the bottom row
of the first matrix by the right column of the second matrix.

It is now a trivial exercise to confirm Gauss’s observation that T1 × T2 �=
T2 × T1, because if we reverse the transforms T2 × T1 to T1 × T2 we get[

Aa + Bc Ab + Bd

Ca + Dc Cb + Dd

]
=

[
a b

c d

]
·
[

A B

C D

]
(7.15)

which shows conclusively that the product of two transforms is not co-
mmutative.

56 Mathematics for Computer Graphics

One immediate problem with this notation is that there is no apparent
mechanism to add or subtract a constant such as c or f :

x′ = ax + by + c

y′ = dx + ey + f (7.16)

Mathematicians resolved this in the 19th century, by the use of homoge-
neous coordinates. But before we look at this idea, it must be pointed out that
currently there are two systems of matrix notation in use.

7.2.1 Systems of Notation

Over the years, two systems of matrix notation have evolved: one where the
matrix multiplies a column vector, as described above, and another where a
row vector multiplies the matrix:

[x′ y′] = [x y].
[

a c
b d

]
(7.17)

Note how the elements of the matrix are transposed to accommodate the
algebraic correctness of the transformation. There is no preferred system of
notation, and you will find technical books and papers supporting both. For
example, Computer Graphics: Principles and Practice (Foley et al., 1990)
employs the column vector notation, whereas the Gems books (Glassner
et al., 1990) employ the row vector notation. The important thing to remem-
ber is that the rows and columns of the matrix are transposed when moving
between the two systems.

7.2.2 The Determinant of a Matrix

The determinant of a 2 × 2 matrix is a scalar quantity computed. Given a
matrix [

a b
c d

]

its determinant is ad – cb and is represented by∣∣∣∣a b
c d

∣∣∣∣ (7.18)

For example, the determinant of
[
3 2
1 2

]
is 3 × 2 − 1 × 2 = 4

Later, we will discover that the determinant of a 2 × 2 matrix determines
the change in area that occurs when a polygon is transformed by the matrix.
For example, if the determinant is 1, there is no change in area, but if the
determinant is 2, the polygon’s area is doubled.

7 Transformation 57

7.3 Homogeneous Coordinates

Homogeneous coordinates surfaced in the early 19th century, when they were
independently proposed by Möbius (who also invented a one-sided curled
band, the Möbius strip), Feuerbach, Bobillier, and Plücker. Möbius named
them barycentric coordinates. They have also been called areal coordinates
because of their area-calculating properties.

Basically, homogeneous coordinates define a point in a plane using three
coordinates instead of two. Initially, Plücker located a homogeneous point
relative to the sides of a triangle, but later revised his notation to the one
employed in contemporary mathematics and computer graphics. This states
that for a point P with coordinates (x, y) there exists a homogeneous point
(x, y, t) such that X = x/t and Y = y/t. For example, the point (3, 4) has
homogeneous coordinates (6, 8, 2), because 3 = 6/2 and 4 = 8/2. But the
homogeneous point (6, 8, 2) is not unique to (3, 4); (12, 16, 4), (15, 20, 5) and
(300, 400, 100) are all possible homogeneous coordinates for (3, 4).

The reason why this coordinate system is called ‘homogeneous’ is because
it is possible to transform functions such as f (x, y) into the form f (x/t, y/t)
without disturbing the degree of the curve. To the non-mathematician this
may not seem anything to get excited about, but in the field of projective
geometry it is a very powerful concept.

For our purposes, we can imagine that a collection of homogeneous points
of the form (x, y, t) exist on an xy-plane where t is the z -coordinate, as
illustrated in Figure 7.4. The figure shows a triangle on the t = 1 plane,
and a similar triangle, much larger, on a more distant plane. Thus instead
of working in two dimensions, we can work on an arbitrary xy-plane in three
dimensions. The t- or z -coordinate of the plane is immaterial because the
x - and y-coordinates are eventually scaled by t. However, to keep things simple
it seems a good idea to choose t = 1. This means that the point (x, y) has
homogeneous coordinates (x, y, 1), making scaling unnecessary.

If we substitute 3D homogeneous coordinates for traditional 2D Cartesian
coordinates, we must attach a 1 to every (x, y) pair. When a point (x, y, 1)
is transformed, it will emerge as (x′, y′, 1), and we discard the 1. This may
seem a futile exercise, but it resolves the problem of creating a translation
transformation.

Consider the following transformation on the homogeneous point (x, y, 1):⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ a b c

d e f
0 0 1

⎤
⎦ .

⎡
⎣ x

y
1

⎤
⎦ (7.19)

This expands to

x′ = ax + by + c

y′ = dx + ey + f

1 = 1 (7.20)

58 Mathematics for Computer Graphics

Y

X

t

I

Fig. 7.4. 2D homogeneous coordinates can be visualized as a plane in 3D space,
generally where t = 1, for convenience.

which solves the above problem of adding a constant.
Let’s now go on to see how homogeneous coordinates are used in practice.

7.3.1 2D Translation

The algebraic and matrix notation for 2D translation is

x′ = x + tx

y′ = y + ty (7.21)

or, using matrices, ⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 0 tx

0 1 ty
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.22)

7.3.2 2D Scaling

The algebraic and matrix notation for 2D scaling is

x′ = sxx

y′ = syy (7.23)

or, using matrices, ⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ sx 0 0

0 sy 0
0 0 1

⎤
⎦ .

⎡
⎣ x

y
1

⎤
⎦ (7.24)

7 Transformation 59

The scaling action is relative to the origin, i.e. the point (0,0) remains (0,0)
All other points move away from the origin. To scale relative to another point
(px, py) we first subtract (px, py) from (x, y) respectively. This effectively trans-
lates the reference point (px, py) back to the origin. Second, we perform the
scaling operation, and third, add (px, py) back to (x, y) respectively, to com-
pensate for the original subtraction. Algebraically this is

x′ = sx(x − px) + px

y′ = sy(y − py) + py (7.25)

which simplifies to

x′ = sxx + px(1 − sx)
y′ = syy + py(1 − sy) (7.26)

or in a homogeneous matrix form⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ sx 0 px(1 − sx)

0 sy py(1 − sy)
0 0 1

⎤
⎦ .

⎡
⎣ x

y
1

⎤
⎦ (7.27)

For example, to scale a shape by 2 relative to the point (1, 1) the
matrix is ⎡

⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 2 0 −1

0 2 −1
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

7.3.3 2D Reflections

The matrix notation for reflecting about the y-axis is:⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ −1 0 0

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.28)

or about the x -axis ⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 0 0

0 −1 0
0 0 1

⎤
⎦ .

⎡
⎣ x

y
1

⎤
⎦ (7.29)

However, to make a reflection about an arbitrary vertical or horizontal
axis we need to introduce some more algebraic deception. For example, to
make a reflection about the vertical axis x = 1, we first subtract 1 from the
x -coordinate. This effectively makes the x = 1 axis coincident with the major
y-axis. Next we perform the reflection by reversing the sign of the modified

60 Mathematics for Computer Graphics

x -coordinate. And finally, we add 1 to the reflected coordinate to compensate
for the original subtraction. Algebraically, the three steps are

x1 = x − 1
x2 = −(x − 1)
x′ = −(x − 1) + 1

which simplifies to

x′ = −x + 2
y′ = y (7.30)

or in matrix form, ⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ −1 0 2

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.31)

Figure 7.5 illustrates this process.
In general, to reflect a shape about an arbitrary y-axis, y = ax, the fol-

lowing transform is required:

x′ = −(x − ax) + ax = −x + 2ax

y′ = y (7.32)

or, in matrix form, ⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ −1 0 2ax

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.33)

−2 −1 0

Y

X

1 2 3 4

Fig. 7.5. The shape on the right is reflected about the x = 1 axis.

7 Transformation 61

Similarly, this transform is used for reflections about an arbitrary x -axis,
y = ay:

x′ = x

y′ = −(y − ay) + ay = −y + 2ay (7.34)

or, in matrix form, ⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 0 0

0 −1 2ay

0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.35)

7.3.4 2D Shearing

A shape is sheared by leaning it over at an angle β. Figure 7.6 illustrates
the geometry, and we see that the y-coordinate remains unchanged but the
x -coordinate is a function of y and tan(β).

x′ = x + y tan(β)
y′ = y (7.36)

or, in matrix form, ⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 tan(β) 0

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.37)

Sheared

y tan b

X

y

Y

Original

b

Fig. 7.6. The original square shape is sheared to the right by an angle β, and the
horizontal shift is proportional to ytan(β).

62 Mathematics for Computer Graphics

7.3.5 2D Rotation

Figure 7.7 shows a point P(x, y) which is to be rotated by an angle β about
the origin to P ′(x′, y′). It can be seen that

x′ = R cos(θ + β)
y′ = R sin(θ + β) (7.38)

therefore

x′ = R(cos(θ) cos(β) − sin(θ) sin(β))

y′ = R(sin(θ) cos(β) + cos(θ) sin(β))

x′ = R
(x

R
cos(β) − y

R
sin(β)

)
y′ = R

(y

R
cos(β) +

x

R
sin(β)

)
x′ = x cos(β) − y sin(β)
y′ = x sin(β) + y cos(β) (7.39)

or, in matrix form,⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ cos(β) − sin(β) 0

sin(β) cos(β) 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.40)

For example, to rotate a point by 90◦ the matrix becomes⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 0 −1 0

1 0 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

b

y

y'

x' x X

Y

q

P(x, y)

P'(x', y')

Fig. 7.7. The point P (x, y) is rotated through an angle β to P ′(x′, y′).

7 Transformation 63

Thus the point (1, 0) becomes (0, 1). If we rotate by 360◦ the matrix becomes⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

Such a matrix has a null effect and is called an identity matrix.
To rotate a point (x, y) about an arbitrary point (px, py) we first subtract

(px, py) from the coordinates (x, y) respectively. This enables us to perform
the rotation about the origin. Second, we perform the rotation, and third, we
add (px, py) to compensate for the original subtraction. Here are the steps:

1 Subtract (px, py):

x1 = (x − px)
y1 = (y − py)

2 Rotate β about the origin:

x2 = (x − px) cos(β) − (y − py) sin(β)
y2 = (x − px) sin(β) + (y − py) cos(β)

3 Add (px, py):

x′ = (x − px) cos(β) − (y − py) sin(β) + px

y′ = (x − px) sin(β) + (y − py) cos(β) + py

Simplifying,

x′ = x cos(β) − y sin(β) + px(1 − cos(β)) + py sin(β)
y′ = x sin(β) + y cos(β) + py(1 − cos(β)) − px sin(β) (7.41)

and, in matrix form,⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ cos(β) − sin(β) px(1 − cos(β)) + py sin(β)

sin(β) cos(β) py(1 − cos(β)) − px sin(β)
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.42)

If we now consider rotating a point 90◦ about the point (1, 1) the matrix
operation becomes ⎡

⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 0 −1 2

1 0 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

A simple test is to substitute the point (2, 1) for (x, y): it is transformed
correctly to (1, 2).

64 Mathematics for Computer Graphics

The algebraic approach in deriving the above transforms is relatively easy.
However, it is also possible to use matrices to derive compound transforma-
tions, such as a reflection relative to an arbitrary line and scaling and rotation
relative to an arbitrary point. These transformations are called affine, as paral-
lel lines remain parallel after being transformed. One cannot always guarantee
that angles and lengths are preserved, as the scaling transformation can alter
these when different x and y scaling factors are used. For completeness, we
will repeat these transformations from a matrix perspective.

7.3.6 2D Scaling

The strategy we used to scale a point (x, y) relative to some arbitrary point
(px, py) was to first, translate (−px,−py); second, perform the scaling; and
third, translate (px, py). These three transforms can be represented in matrix
form as follows:⎡

⎣ x′

y′

1

⎤
⎦ = [translate(px, py)] · [scale(sx, sy)] · [translate(−px,−py)] ·

⎡
⎣ x

y
1

⎤
⎦

which expands to
⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 0 px

0 1 py

0 0 1

⎤
⎦ ·

⎡
⎣ sx 0 0

0 sy 0
0 0 1

⎤
⎦ ·

⎡
⎣ 1 0 −px

0 1 −py

0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.43)

Note the sequence of the transforms, as this often causes confusion. The first
transform acting on the point (x, y, 1) is translate (−px,−py), followed by
scale (sx, sy), followed by translate (px, py). If they are placed in any other
sequence, you will discover, like Gauss, that transforms are not commutative!

We can now concatenate these matrices into a single matrix by multiplying
them together. This can be done in any sequence, so long as we preserve the
original order. Let’s start with scale (sx, sy) and translate (−px,−py). This
produces

⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 0 px

0 1 py

0 0 1

⎤
⎦ ·

⎡
⎣ sx 0 −sxpx

0 sy −sypy

0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

and finally ⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ sx 0 px(1 − sx)

0 sy py(1 − sy)
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.44)

which is the same as the previous transform (7.27).

7 Transformation 65

7.3.7 2D Reflections

A reflection about the y-axis is given by⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ −1 0 0

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.45)

Therefore, using matrices, we can reason that a reflection transform about an
arbitrary axis x = ax, parallel with the y-axis, is given by⎡

⎣ x′

y′

1

⎤
⎦ = [translate(ax, 0)] · [reflection] · [translate(−ax, 0)] ·

⎡
⎣ x

y
1

⎤
⎦

which expands to⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 0 ax

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ −1 0 0

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ 1 0 −ax

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

We can now concatenate these matrices into a single matrix by multiplying
them together. Let’s begin by multiplying the reflection and the translate
(−ax, 0) matrices together. This produces⎡

⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 0 ax

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ −1 0 ax

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

and finally ⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ −1 0 2ax

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.46)

which is the same as the previous transform (7.33).

7.3.8 2D Rotation about an Arbitrary Point

A rotation about the origin is given by⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ cos(β) − sin(β) 0

sin(β) cos(β) 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.47)

Therefore, using matrices, we can develop a rotation about an arbitrary point
(px, py) as follows:⎡

⎣ x′

y′

1

⎤
⎦ = [translate(px, py)] · [rotate β] · [translate(−px,−py)] ·

⎡
⎣ x

y
1

⎤
⎦

66 Mathematics for Computer Graphics

which expands to⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 0 px

0 1 py

0 0 1

⎤
⎦ ·

⎡
⎣ cos(β) − sin(β) 0

sin(β) cos(β) 0
0 0 1

⎤
⎦ ·

⎡
⎣ 1 0 −px

0 1 −py

0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

We can now concatenate these matrices into a single matrix by multiplying
them together. Let’s begin by multiplying the rotate β and the translate
(−px,−py) matrices together. This produces⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 0 px

0 1 py

0 0 1

⎤
⎦·

⎡
⎣ cos(β) − sin(β) −px cos(β) + py sin(β)

sin(β) cos(β) −px sin(β) − py cos(β)
0 0 1

⎤
⎦·

⎡
⎣ x

y
1

⎤
⎦

and finally⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ cos(β) − sin(β) px(1 − cos(β)) + py sin(β)

sin(β) cos(β) py(1 − cos(β)) − px sin(β)
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.48)

which is the same as the previous transform (7.42).
I hope it is now is obvious to the reader that one can derive all sorts of

transforms either algebraically, or by using matrices – it is just a question of
convenience.

7.4 3D Transformations

Now we come to transformations in three dimensions, where we apply the
same reasoning as in two dimensions. Scaling and translation are basically
the same, but where in 2D we rotated a shape about a point, in 3D we rotate
an object about an axis.

7.4.1 3D Translation

The algebra is so simple for 3D translation that we can write the homogeneous
matrix directly: ⎡

⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.49)

7.4.2 3D Scaling

The algebra for 3D scaling is

x′ = sxx

y′ = syy

z′ = szz (7.50)

7 Transformation 67

which in matrix form is⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.51)

The scaling is relative to the origin, but we can arrange for it to be relative
to an arbitrary point (px, py, pz) with the following algebra:

x′ = sx(x − px) + px

y′ = sy(y − py) + py

z′ = sz(z − pz) + pz (7.52)

which in matrix form is⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

sx 0 0 px(1 − sx)
0 sy 0 py(1 − sy)
0 0 sz pz(1 − sz)
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.53)

7.4.3 3D Rotations

In two dimensions a shape is rotated about a point, whether it be the origin
or some arbitrary position. In three dimensions an object is rotated about an
axis, whether it be the x -, y- or z -axis, or some arbitrary axis. To begin with,
let’s look at rotating a vertex about one of the three orthogonal axes; such
rotations are called Euler rotations after the Swiss mathematician Leonhard
Euler (1707–1783).

Recall that a general 2D-rotation transform is given by⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ cos(β) − sin(β) 0

sin(β) cos(β) 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.54)

which in 3D can be visualized as rotating a point P (x, y, z) on a plane parallel
with the xy-plane as shown in Figure 7.8. In algebraic terms this can be written
as

x′ = x cos(β) − y sin(β)
y′ = x sin(β) + y cos(β)
z′ = z (7.55)

Therefore, the 3D transform can be written as⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos(β) − sin(β) 0 0
sin(β) cos(β) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.56)

68 Mathematics for Computer Graphics

Y

Z
X

b

P ′(x ′, y ′, z ′)

P (x , y, z)

Fig. 7.8. Rotating P about the z-axis.

which basically rotates a point about the z -axis.
When rotating about the x -axis, the x -coordinate remains constant while

the y- and z -coordinates are changed. Algebraically, this is

x′ = x

y′ = y cos(β) − z sin(β)
z′ = y sin(β) + z cos(β) (7.57)

or, in matrix form,⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 cos(β) − sin(β) 0
0 sin(β) cos(β) 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.58)

When rotating about the y-axis, the y-coordinate remains constant while the
x - and z -coordinates are changed. Algebraically, this is

x′ = z sin(β) + x cos(β)
y′ = y

z′ = z cos(β) − x sin(β) (7.59)

or, in matrix form,⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos(β) 0 sin(β) 0
0 1 0 0

− sin(β) 0 cos(β) 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.60)

Note that the matrix terms do not appear to share the symmetry seen in the
previous two matrices. Nothing has really gone wrong, it is just the way the
axes are paired together to rotate the coordinates.

7 Transformation 69

The above rotations are also known as yaw, pitch and roll. Great care
should be taken with these terms when referring to other books and technical
papers. Sometimes a left-handed system of axes is used rather than a right-
handed set, and the vertical axis may be the y-axis or the z -axis.

Consequently, the matrices representing the rotations can vary greatly. In
this text all Cartesian coordinate systems are right-handed, and the vertical
axis is always the y-axis.

The roll, pitch and yaw angles can be defined as follows:

• roll is the angle of rotation about the z -axis
• pitch is the angle of rotation about the x -axis
• yaw is the angle of rotation about the y-axis.

Figure 7.9 illustrates these rotations and the sign convention. The homo-
geneous matrices representing these rotations are as follows:

• rotate roll about the z -axis:⎡
⎢⎢⎣

cos(roll) − sin(roll) 0 0
sin(roll) cos(roll) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (7.61)

• rotate pitch about the x -axis:⎡
⎢⎢⎣

1 0 0 0
0 cos(pitch) − sin(pitch) 0
0 sin(pitch) cos(pitch) 0
0 0 0 1

⎤
⎥⎥⎦ (7.62)

• rotate yaw about the y-axis:⎡
⎢⎢⎣

cos(yaw) 0 sin(yaw) 0
0 1 0 0

− sin(yaw) 0 cos(yaw) 0
0 0 0 1

⎤
⎥⎥⎦ (7.63)

pitch roll

yaw
Z X

Y

Fig. 7.9. The convention for roll, pitch and yaw angles.

70 Mathematics for Computer Graphics

A common sequence for applying these rotations is roll, pitch, yaw, as seen
in the following transform:⎡

⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦ = [yaw] · [pitch] · [roll] ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.64)

and if a translation is involved,⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ = [translate] · [yaw] · [pitch] · [roll] ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.65)

When these rotation transforms are applied, the vertex is first rotated about
the z -axis (roll), followed by a rotation about the x -axis (pitch), followed by a
rotation about the y-axis (yaw). Euler rotations are relative to the fixed frame
of reference. This is not always easy to visualize, as one’s attention is normally
with the rotating frame of reference. Let’s consider a simple example where
an axial system is subjected to a pitch rotation followed by a yaw rotation
relative to fixed frame of reference.

We begin with two frames of reference XYZ and X ′Y ′Z ′ mutually aligned.
Figure 7.10 shows the orientation of X ′Y ′Z ′ after it is subjected to a pitch of
90◦ about the x -axis. Figure 7.11 shows the the final orientation after X ′Y ′Z ′

is subjected to a yaw of 90◦ about the y-axis.

7.4.4 Gimbal Lock

Let’s take another example starting from the point where the two axial sys-
tems are mutually aligned. Figure 7.12 shows the orientation of X ′Y ′Z ′ after
it is subjected to a roll of 45◦ about the z -axis, and Figure 7.13 shows the
orientation of X ′Y ′Z ′ after it is subjected to a pitch of 90◦ about the x -axis.
Now the interesting thing about this orientation is that if we now performed

Y ′

Z ′

X ′
XZ

Y

pitch = 90�

Fig. 7.10. The X ′Y ′Z ′ axial system after a pitch of 90◦.

7 Transformation 71

X ′

Y ′

Z ′ XZ

Y

yaw = 90�

Fig. 7.11. The X ′Y ′Z ′ axial system after a yaw of 90◦.

X ′

Y ′

Z ′

Y

Z X

roll = 45�

Fig. 7.12. The X ′Y ′Z ′ axial system after a roll of 45◦.

X ′

Z ′

Y ′

Z X

Y

pitch = 90�

Fig. 7.13. The X ′Y ′Z ′ axial system after a pitch of 90◦.

a yaw of 45◦ about the z -axis, it would rotate the x′-axis towards the x -axis,
counteracting the effect of the original roll. yaw has become a negative roll
rotation, caused by the 90◦ pitch. This situation is known as gimbal lock, be-
cause one degree of rotational freedom has been lost. Quite innocently, we
have stumbled across one of the major weaknesses of Euler angles: under cer-
tain conditions it is only possible to rotate an object about two axes. One
way of preventing this is to create a secondary set of axes constructed from
three orthogonal vectors that are also rotated alongside an object or virtual

72 Mathematics for Computer Graphics

camera. But instead of making the rotations relative to the fixed frame of
reference, the roll, pitch and yaw rotations are relative to the rotating frame
of reference. Another method is to use quaternions, which will be investigated
later in this chapter.

7.4.5 Rotating about an Axis

The above rotations were relative to the x -, y- and z -axes. Now let’s consider
rotations about an axis parallel to one of these axes. To begin with, we will
rotate about an axis parallel with the z -axis, as shown in Figure 7.14. The
scenario is very reminiscent of the 2D case for rotating a point about an
arbitrary point, and the general transform is given by⎡

⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦ = [translate(px, py, 0)].[rotateβ].[translate(−px,−py, 0)].

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

(7.66)

and the matrix is⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos(β) − sin(β) 0 px(1 − cos(β)) + py sin(β)
sin(β) cos(β) 0 py(1 − cos(β)) − px sin(β)

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

(7.67)

I hope you can see the similarity between rotating in 3D and 2D: the x - and
y-coordinates are updated while the z -coordinate is held constant. We can

P ′ (x ′, y ′, z ′)

P (x, y, z) X
Z

Y

px

py

b
z ′ = z

Fig. 7.14. Rotating a point about an axis parallel with the z-axis.

7 Transformation 73

now state the other two matrices for rotating about an axis parallel with the
x -axis and parallel with the y-axis:

• rotating about an axis parallel with the x -axis:

⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 cos(β) − sin(β) py(1 − cos(β)) + pz sin(β)
0 sin(β) cos(β) pz(1 − cos(β)) − py sin(β)
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

(7.68)

• rotating about an axis parallel with the y-axis:

⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos(β) 0 sin(β) px(1 − cos(β)) − pz sin(β)
0 1 0 0

− sin(β) 0 cos(β) pz(1 − cos(β)) + px sin(β)
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

(7.69)

7.4.6 3D Reflections

Reflections in 3D occur with respect to a plane, rather than an axis. The
matrix giving the reflection relative to the yz -plane is⎡

⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.70)

and the reflection relative to a plane parallel to, and ax units from, the yz -
plane is ⎡

⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1 0 0 2ax

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.71)

It is left to the reader to develop similar matrices for the other major axial
planes.

7.5 Change of Axes

Points in one coordinate system often have to be referenced in another one.
For example, to view a 3D scene from an arbitrary position, a virtual camera
is positioned in the world space using a series of transformations. An object’s

74 Mathematics for Computer Graphics

coordinates, which are relative to the world frame of reference, are computed
relative to the camera’s axial system, and then used to develop a perspective
projection. Before explaining how this is achieved in 3D, let’s examine the
simple case of changing axial systems in two dimensions.

7.5.1 2D Change of Axes

Figure 7.15 shows a point P(x, y) relative to the XY -axes, but we require to
know the coordinates relative to the X ′Y ′-axes. To do this, we need to know
the relationship between the two coordinate systems, and ideally we want to
apply a technique that works in 2D and 3D. If the second coordinate system
is a simple translation (tx, ty) relative to the reference system, as shown in
Figure 7.15, the point P(x, y) has coordinates relative to the translated system
(x − tx, y − ty): ⎡

⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ 1 0 −tx

0 1 −ty
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.72)

If the X ′Y ′-axes are rotated β relative to the XY -axes, as shown in Figure 7.16,
a point P(x, y) relative to the XY -axes has coordinates (x′, y′) relative to the
rotated axes given by⎡

⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ cos(−β) − sin(−β) 0

sin(−β) cos(−β) 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

which simplifies to⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ cos(β) sin(β) 0

− sin(β) cos(β) 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.73)

X ′

Y ′

tx

ty

X

Y

P(x, y) = P ′(x ′, y ′)

Fig. 7.15. The X ′Y ′-axes are translated by (tx, ty).

7 Transformation 75

b

y

X

x

x'

Y'
y'

X'

Y
P (x, y)

P' (x', y')

Fig. 7.16. The secondary set of axes are rotated by β.

When a coordinate system is rotated and translated relative to the refer-
ence system, a point P(x, y) has coordinates (x′, y′) relative to the new axes
given by⎡

⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ cos(β) sin(β) 0

− sin(β) cos(β) 0
0 0 1

⎤
⎦ ·

⎡
⎣ 1 0 −tx

0 1 −ty
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

which simplifies to⎡
⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ cos(β) sin(β) −tx cos(β) − ty sin(β)

− sin(β) cos(β) tx sin(β) − ty cos(β)
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ (7.74)

7.6 Direction Cosines

Direction cosines are the cosines of the angles between a vector and the axes,
and for unit vectors they are the vector’s components. Figure 7.17 shows two
unit vectors X ′ and Y ′, and by inspection the direction cosines for X ′ are
cos(β) and cos(90◦ −β), which can be rewritten as cos(β) and sin(β), and the
direction cosines for Y ′ cos(90◦ + β) and cos(β), which can be rewritten as
− sin(β) and cos(β). But these direction cosines cos(β), sin(β),− sin(β) and
cos(β) are the four elements of the rotation matrix used above:[

cos(β) sin(β)
− sin(β) cos(β)

]
(7.75)

The top row contains the direction cosines for the X ′-axis and the bottom
row contains the direction cosines for the Y ′-axis. This relationship also holds
in 3D.

76 Mathematics for Computer Graphics

b

b

90�−b

Y

Y'
X'

X

Fig. 7.17. If the X ′- and Y ′-axes are assumed to be unit vectors their direction cosines
form the elements of the rotation matrix.

Before exploring changes of axes in 3D let’s evaluate a simple example in
2D where a set of axes is rotated 45◦ as shown in Figure 7.18. The appropriate
transform is ⎡

⎣ x′

y′

1

⎤
⎦ =

⎡
⎣ cos(45◦) sin(45◦) 0

− sin(45◦) cos(45◦) 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

=

⎡
⎣ 0.707 0.707 0

−0.707 0.707 0
0 0 1

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦

The four vertices on a unit square become

(0, 0) → (0, 0)
(1, 0) → (0.707,−0.707)
(1, 1) → (1.414, 0)
(0, 1) → (0.707, 0.707)

which inspection of Figure 7.18 shows to be correct.

Y'

Y

(0,1)
X'

X

(0.707, 0.707)'

(1,0)
(0.707, −0.707)'

(1,1)
(1.414, 0)'

Fig. 7.18. The vertices of a unit square relative to the two axial systems.

7 Transformation 77

7.6.1 Positioning the Virtual Camera

Four coordinate systems are used in the computer graphics pipeline: object
space, world space, camera space and image space.

• The object space is a domain where objects are modelled and assembled.
• The world space is where objects are positioned and animated through

appropriate transforms. The world space also hosts a virtual camera or
observer.

• The camera space is a transform of the world space to the camera’s point
of view.

• Finally, the image space is a projection – normally perspective – of the
camera space onto an image plane.

The transforms considered so far are used to manipulate and position ob-
jects within the world space. What we will consider next is how a virtual
camera or observer is positioned in world space, and the process of convert-
ing world coordinates to camera coordinates. The procedure used generally
depends on the method employed to define the camera’s frame of reference
within the world space, which may involve the use of direction cosines, Euler
angles or quaternions. We will examine how each of these techniques could be
implemented.

7.6.2 Direction Cosines

A 3D unit vector has three components [x y z]T, which are equal to the cosines
of the angles formed between the vector and the three orthogonal axes. These
angles are known as direction cosines and can be computed taking the dot
product of the vector and the Cartesian unit vectors. Figure 7.19 shows the
direction cosines and the angles. These direction cosines enable any point P(x,
y, z) in one frame of reference to be transformed into P ′(x′, y′, z′) in another
frame of reference as follows:⎡

⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.76)

where: r11, r12, r13 are the direction cosines of the secondary x -axis
r21, r22, r23 are the direction cosines of the secondary y-axis
r31, r32, r33 are the direction cosines of the secondary z -axis.

To illustrate this operation, consider the situation shown in Figure 7.20
which shows two axial systems mutually aligned. Evaluating the direction
cosines results in the following matrix transformation:⎡

⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

78 Mathematics for Computer Graphics

Y
cos b

cos q cos a

b

q a

Z X

Fig. 7.19. The components of a unit vector are equal to the cosines of the angles
between the vector and the axes.

Z

Z' X'

X

Y

Y'

Fig. 7.20. Two axial systems mutually aligned.

which is the identity matrix and implies that (x′, y′, z′) = (x, y, z).
Figure 7.21 shows another situation, and the associated transform is⎡

⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

Substituting the (1, 1, 0) for (x, y, z) produces values of (1,−1, 0) for (x′, y′, z′)
in the new frame of reference, which by inspection is correct.

If the virtual camera is offset by (tx, ty, tz) the transform relating points
in world space to camera space can be expressed as a compound operation

7 Transformation 79

Z

Z' X'

X

Y

X'

Y'

Fig. 7.21. The X ′Y ′Z ′ axial system after a roll of 90◦.

consisting of a translation back to the origin, followed by a change of axial
systems. This can be expressed as⎡

⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.77)

As an example, consider the situation shown in Figure 7.22. The values of
(tx, ty, tz) are (10, 1, 1), and the direction cosines are as shown in the following
matrix operation:⎡

⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1 0 0 − 10
0 1 0 −1
0 0 1 −1
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

which concatenates to⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1 0 0 10
0 1 0 −1
0 0 −1 1
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

Substituting (0, 0, 0) for (x, y, z) in the above transform produces (10,−1, 1)
for (x′, y′, z′), which can be confirmed from Figure 7.22. Similarly, substituting
(0, 1, 1) for (x, y, z) produces (10,0,0) for (x′, y′, z′), which is also correct.

7.6.3 Euler Angles

Another approach for locating the virtual camera involves Euler angles, but
we must remember that they suffer from gimbal lock (see page 70). However, if

80 Mathematics for Computer Graphics

X ′ Z ′

Y ′

Y

Z 10
1

1

X

(0, 1, 1)

Fig. 7.22. The secondary axial system is subject to a yaw of 180◦ and an offset of
(10, 1, 1).

the virtual camera is located in world space using Euler angles, the transform
relating world coordinates to camera coordinates can be derived from the
inverse operations. The yaw, pitch, roll matrices described above are called
orthogonal matrices, as the inverse matrix is the transpose of the original rows
and columns. Consequently, to rotate through angles –roll, –pitch and –yaw,
we use

• rotate –roll about the z -axis:

⎡
⎢⎢⎣

cos(roll) sin(roll) 0 0
− sin(roll) cos(roll) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (7.78)

• rotate –pitch about the x -axis:

⎡
⎢⎢⎣

1 0 0 0
0 cos(pitch) sin(pitch) 0
0 − sin(pitch) cos(pitch) 0
0 0 0 1

⎤
⎥⎥⎦ (7.79)

• rotate –yaw about the y-axis:

⎡
⎢⎢⎣

cos(yaw) 0 − sin(yaw) 0
0 1 0 0

sin(yaw) 0 cos(yaw) 0
0 0 0 1

⎤
⎥⎥⎦ (7.80)

7 Transformation 81

The same result is obtained simply by substituting –roll, –pitch, –yaw in the
original matrices. As described above, the virtual camera will normally be
translated from the origin by (tx, ty, tz), which implies that the transform
from the world space to the camera space must be evaluated as follows:⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ = [−roll]·[−pitch]·[−yaw]·[−translate(−tx,−ty,−tz)·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.81)

which can be represented by a single homogeneous matrix:⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.82)

where

T11 = cos(yaw) cos(roll) + sin(yaw) sin(pitch) sin(roll)
T12 = cos(pitch) sin(roll)
T13 = − sin(yaw) cos(roll) + cos(yaw) sin(pitch) sin(roll)
T14 = −(txT11 + tyT12 + tzT13)
T21 = − cos(yaw) sin(roll) + sin(yaw) sin(pitch) cos(roll)
T22 = cos(pitch) cos(roll)
T23 = sin(yaw) sin(roll) + cos(yaw) sin(pitch) cos(roll)
T24 = −(txT21 + tyT22 + tzT23)
T31 = sin(yaw) cos(pitch)
T32 = − sin(pitch)
T33 = cos(yaw) cos(pitch)
T34 = −(txT31 + tyT32 + tzT33)
T41 = 0
T42 = 0
T43 = 0
T44 = 1 (7.83)

This, too, can be verified by a simple example. For instance, consider the
situation shown in Figure 7.22 where the following conditions prevail:

roll = 0◦

pitch = 0◦

yaw = 180◦

tx = 10

82 Mathematics for Computer Graphics

ty = 1
tz = 1

The transform is ⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1 0 0 10
0 1 0 −1
0 0 −1 1
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

which is identical to the equation used for direction cosines. Another example
is shown in Figure 7.23, where the following conditions exist:

roll = 90◦

pitch = 180◦

yaw = 0◦

tx = 0.5
ty = 0.5
tz = 11

The transform is⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −1 0 0.5
−1 0 0 0.5

0 0 −1 11
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

Substituting (1, 1, 1) for (x, y, z) produces (−0.5,−0.5, 10) for (x′, y′, z′). Sim-
ilarly, substituting (0, 0, 1) for (x, y, z) produces (0.5, 0.5, 10) for (x′, y′, z′),
which can be visually verified from Figure 7.23.

(1, 1, 1)

Y

X

Z ′Y ′

Z

X ′

(0.5, 0.5, 11)

Fig. 7.23. The secondary axial system is subjected to a roll of 90◦, a pitch of 180◦,
and a translation of (0.5, 0.5, 11).

7 Transformation 83

7.7 Rotating a Point about an Arbitrary Axis

Let us now consider two ways of developing a matrix for rotating a point
about an arbitrary axis. The first approach employs vector analysis and is
quite succinct. The second technique, however, is less analytical and relies on
matrices and trigonometric evaluation and is rather laborious. Fortunately,
they both arrive at the same result!

Figure 7.24 shows three views of the geometry associated with the task
at hand. The left-hand image illustrates the overall scenario; the middle im-
age illustrates a side elevation; whilst the right-hand image illustrates a plan
elevation.

r
r

N

O O

N N
P'

P'

Pr

r

p'P

P

Q
Qa

a

q q

p

pn n

w

n
n

Fig. 7.24. Three views of the geometry associated with rotating a point about an
arbitrary axis.

The axis of rotation is given by the unit vector v̂ = ai + bj + ck
P (xp, yp, zp) is the point to be rotated by angle α and P ′(x′

p, y′
p, z′p) is the

rotated point.
O is the origin, whilst p and p′ are position vectors for P and P ′ respec-

tively.
From Figure 7.24

p′ =
−−→
ON +

−−→
NQ +

−−→
QP ′

To find
−−→
ON

‖n‖ = ‖p‖ cos θ = n̂.p

therefore
−−→
ON = n = n̂(n̂.p)

84 Mathematics for Computer Graphics

To find −−→
NQ

−−→
NQ =

NQ

NP
r =

NQ

NP ′ r = cos α · r
but

p = n + r = n̂(n̂.p) + r

therefore

r = p − n̂(n̂.p)

and
−−→
NQ = [p − n̂(n̂.p)] cos α

To find
−−→
QP ′

Let

n̂ × p = w

where

‖w‖ = ‖n̂‖ · ‖p‖ sin θ = ‖p‖ sin θ

but

‖r‖ = ‖p‖ sin θ

therefore

‖w‖ = ‖r‖
Now

QP ′

NP ′ =
QP ′

‖r‖ =
QP ′

‖w‖ = sin α

therefore
−−→
QP ′ = w sin α = (n̂ × p) sin α

then

p′ = n̂(n̂.p) + [p − n̂(n̂.p)] cos α + (n̂ × p) sin α

and

p′ = p cos α + n̂(n̂.p)(1 − cos α) + (n̂ × p) sin α

Let

K = 1 − cos α

then

p′ = p cos α + n̂(n̂.p)K + (n̂ × p) sin α

7 Transformation 85

and

p′ = (xpi + ypj + zpk) cos α + (ai + bj + ck) (axp + byp + czp) K

+ [(bzp − cyp) i + (cxp − azp) j + (ayp − bxp)k] sinα

p′ = [xp cos α + a (axp + byp + czp) K + (bzp − cyp) sinα] i

+ [yp cos α + b (axp + byp + czp) K + (cxp − azp) sin α] j

+ [zp cos α + c (axp + byp + czp) K + (ayp − bxp) sin α]k

p′ =
[
xp

(
a2K + cos α

)
+ yp (abK − c sin α) + zp (acK + b sin α)

]
i

+
[
xp (abK + c sin α) + yp

(
b2K + cos α

)
+ zp (bcK − a sin α)

]
j

+
[
xp (acK − b sin α) + yp (bcK + a sin α) + zp

(
c2K + cos α

)]
k

and the transformation becomes⎡
⎣ x′

p

y′
p

z′p

⎤
⎦ =

⎡
⎣ a2K + cos α abK − c sin α acK + b sin α

abK + c sin α b2K + cos α bcK − a sin α
acK − b sin α bcK + a sin α c2K + cos α

⎤
⎦ ·

⎡
⎣ xp

yp

zp

⎤
⎦

where K = 1 − cos α.

Now let’s approach the problem using transforms and trigonometric identities.
Figure 7.25 shows a point P (x, y, z) to be rotated through an angle α to

P ′(x′, y′, z′) about an axis defined by v = ai + bj + ck where ‖v‖ = 1.
The transforms to achieve this operation can be expressed as follows⎡

⎣ x′

y′

z′

⎤
⎦ = T5 × T4 × T3 × T2 × T1 ×

⎡
⎣ x

y
z

⎤
⎦

which aligns the axis of rotation with the x -axis, performs the rotation of Pα
about the x -axis, and returns the axis of rotation to its original position.

P

b

v

a

c

Y

Z
X

a

q

f

P'

Fig. 7.25. The geometry associated with rotating a point about an arbitrary axis.

86 Mathematics for Computer Graphics

Therefore

T1 rotates φ about the y-axis

T2 rotates −θ about the z-axis

T3 rotates α about the x-axis

T4 rotates θ about the z-axis

T5 rotates −φ about the y-axis

where

T1 =

⎡
⎣ cos φ 0 sinφ

0 1 0
− sin φ 0 cos φ

⎤
⎦ T2 =

⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦

T3 =

⎡
⎣ 1 0 0

0 cos α − sin α
0 sin α cos α

⎤
⎦ T4 =

⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦

T5 =

⎡
⎣ cos φ 0 − sin φ

0 1 0
sin φ 0 cos φ

⎤
⎦

Let

T1 × T2 × T3 × T4 × T5 =

⎡
⎣ E1,1 E1,2 E1,3

E2,1 E2,2 E2,3
E3,1 E3,2 E3,3

⎤
⎦

From Figure 7.25

cos θ =
√

1 − b2 ⇒ cos2 θ = 1 − b2

sin θ = b ⇒ sin2 θ = b2

cos φ =
a√

1 − b2
⇒ cos2 φ =

a2

1 − b2

sin φ =
c√

1 − b2
⇒ sin2 φ =

c2

1 − b2

To find E1,1

E1,1 = cos2 φ cos2 θ + cos2 φ sin2 θ cos α + sin2 φ cos α

E1,1 =
a2

1 − b2 · (1 − b2) +
a2

1 − b2 · b2 cos α +
c2

1 − b2 cos α

E1,1 = a2 +
a2b2

1 − b2 cos α +
c2

1 − b2 cos α

E1,1 = a2 +
(

c2 + a2b2

1 − b2

)
cos α

7 Transformation 87

but

a2 + b2 + c2 = 1 ⇒ c2 = 1 − a2 − b2

substituting c2 in E1,1

E1,1 = a2 +
(

1 − a2 − b2 + a2b2

1 − b2

)
cos α

E1,1 = a2 +

(
1 − a2

) (
1 − b2

)
1 − b2 cos α

E1,1 = a2 +
(
1 − a2) cos α

E1,1 = a2 (1 − cos α) + cos α

Let

K = 1 − cos α

then

E1,1 = a2K + cos α

To find E1,2

E1,2 = cos φ cos θ sin θ − cos φ sin θ cos θ cos α − sin φ cos θ sin α

E1,2 =
a√

1 − b2
·
√

1 − b2 · b − a√
1 − b2

· b ·
√

1 − b2 cos α

− c√
1 − b2

·
√

1 − b2 sin α

E1,2 = ab − ab cos α − c sin α

E1,2 = ab (1 − cos α) − c sin α

E1,2 = abK − c sin α

To find E1,3

E1,3 = cos φ sin φ cos2 θ + cos φ sin φ sin2 θ cos α + sin2 φ sin θ sin α

+ cos2 φ sin θ sin α − cos φ sin φ cos α

E1,3 = cos φ sin φ cos2 θ + cos φ sin φ sin2 θ cos α + sin θ sin α
(
sin2 φ + cos2 φ

)
− cos φ sin φ cos α

E1,3 = cos φ sin φ cos2 θ + cos φ sin φ sin2 θ cos α + sin θ sin α − cos φ sin φ cos α

E1,3 =
a√

1 − b2
· c√

1 − b2
· (1 − b2) +

a√
1 − b2

· c√
1 − b2

· b2 cos α + b sin α

− a√
1 − b2

· c√
1 − b2

cos α

88 Mathematics for Computer Graphics

E1,3 = ac + ac · b2

(1 − b2)
cos α + b sin α − ac

(1 − b2)
cos α

E1,3 = ac + ac ·
(
b2 − 1

)
(1 − b2)

cos α + b sin α

E1,3 = ac (1 − cos α) + b sin α

E1,3 = acK + b sin α

To find E2,1

E2,1 = sin θ cos θ cos φ − cos θ sin θ cos φ cos α + cos θ sin φ sin α

E2,1 = b
√

1 − b · a√
1 − b2

−
√

1 − b2 · b · a√
1 − b2

cos α

+
√

1 − b2 · c√
1 − b2

sin α

E2,1 = ab − ab cos α + c sin α

E2,1 = ab(1 − cos α) + c sin α

E2,1 = abK + c sin α

To find E2,2

E2,2 = sin2 θ + cos2 θ cos α

E2,2 = b2 +
(
1 − b2) cos α

E2,2 = b2 + cos α − b2 cos α

E2,2 = b2(1 − cos α) + cos α

E2,2 = b2K + cos α

To find E2,3

E2,3 = sin θ cos θ sin φ − cos θ sin θ sin φ cos α − cos θ cos φ sin α

E2,3 = b ·
√

1 − b2 · c√
1 − b2

−
√

1 − b2 · b · c√
1 − b2

cos α

−
√

1 − b2 · a√
1 − b2

sin α

E2,3 = bc − bc cos α − a sin α

E2,3 = bc(1 − cos α) − a sin α

E2,3 = bcK − a sin α

To find E3,1

E3,1 = cos φ sin φ cos2 θ + cos φ sin φ sin2 θ cos α − cos2 φ sin θ sin α

− cos φ sin φ cos α

E3,1 =
a√

1 − b2
· c√

1 − b2
· (1 − b2) +

a√
1 − b2

· c√
1 − b2

· b2 cos α

− sin θ sin α
(
cos2 φ + sin2 φ

) − a√
1 − b2

· c√
1 − b2

cos α

7 Transformation 89

but

sin2 φ + cos2 φ = 1

E3,1 = ac − ac

1 − b2

(
1 − b2) cos α − b sin α

E3,1 = ac − ac cos α − b sin α

E3,1 = ac (1 − cos α) − b sin α

E3,1 = acK − b sin α

To find E3,2

E3,2 = sinφ cos θ sin θ − sin φ sin θ cos θ cos α + cos φ cos θ sin α

E3,2 =
c√

1 − b2
·
√

1 − b2 · b − c√
1 − b2

· b ·
√

1 − b2 · cos α

+
a√

1 − b2
·
√

1 − b2 · sin α

E3,2 = bc − bc cos α + a sin α

E3,2 = bc(1 − cos α) + a sin α

E3,2 = bcK + a sin α

To find E3,3

E3,3 = sin2 φ cos2 θ + sin2 φ sin2 θ cos α − cos φ sin φ sin θ sin α

+ cos φ sin φ sin θ sin α + cos2 φ cos α

E3,3 =
c2

1 − b2 · (1 − b2) +
c2

1 − b2 · b2 cos α +
a2

1 − b2 cos α

E3,3 = c2 +
b2c2

1 − b2 cos α +
a2

1 − b2 cos α

E3,3 = c2 +
(

b2c2 + a2

1 − b2

)
cos α

but

a2 = 1 − b2 − c2

E3,3 = c2 +
(

b2c2 + 1 − b2 − c2

1 − b2

)
cos α

E3,3 = c2 +

(
1 − b2)(1 − c2

)
1 − b2 cos α

E3,3 = c2 +
(
1 − c2) cos α

E3,3 = c2 (1 − cos α) + cos α

E3,3 = c2K + cos α

90 Mathematics for Computer Graphics

Therefore the transform is⎡
⎣ x′

y′

z′

⎤
⎦ =

⎡
⎣ a2K + cos α abK − c sin α acK + b sin α

abK + c sin α b2K + cos α bcK − a sin α
acK − b sin α bcK + a sin α c2K + cos α

⎤
⎦ ·

⎡
⎣ x

y
z

⎤
⎦

where

K = 1 − cos α

Which is identical to the transformation derived from the first approach.
Now let’s test the matrix with a simple example that can be easily verified.

If we rotate the point P (10,5,0), 360◦ about an axis defined by v = i+ j+k,
it should return to itself producing P ′ (10,5,0).

Therefore

α = 360◦ cos α = 1 sin α = 0 K = 0

and

a = 1 b = 1 c = 1⎡
⎣ x′

y′

z′

⎤
⎦ =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ ·

⎡
⎣ 10

5
0

⎤
⎦

As the matrix is an identity matrix P ′ = P .

7.7.1 Quaternions

As mentioned earlier, quaternions were invented by Sir William Rowan Hamil-
ton in the mid 19th century. Sir William was looking for a way to represent
complex numbers in higher dimensions, and it took 15 years of toil before he
stumbled upon the idea of using a 4D notation -hence the name ‘quaternion’.

Since this discovery, mathematicians have shown that quaternions can be
used to rotate points about an arbitrary axis, and hence the orientation of
objects and the virtual camera. In order to develop the equation that performs
this transformation we will have to understand the action of quaternions in
the context of rotations.

A quaternion q is a quadruple of real numbers and is defined as

q = [s,v] (7.84)

where s is a scalar and is a 3D vector. If we express the vector in terms of its
components, we have in an algebraic form

q = [s + xi + yj + zk] (7.85)

where s, x, y and z are real numbers.

7 Transformation 91

7.7.2 Adding and Subtracting Quaternions

Given two quaternions q1 and q2,

q1 = [s1,v1] = [s1 + x1i + y1j + z1k]
q2 = [s2,v2] = [s2 + x2i + y2j + z2k] (7.86)

they are equal if, and only if, their corresponding terms are equal. Further-
more, like vectors, they can be added and subtracted as follows:

q1 ± q2 = [(s1 ± s2) + (x1 ± x2)i + (y1 ± y2)j + (z1 ± z2)k] (7.87)

7.7.3 Multiplying Quaternions

Hamilton discovered that special rules must be used when multiplying quater-
nions:

i2 = j2 = k2 = ijk = −1
ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j (7.88)

Note that although quaternion addition is commutative, the rules make quater-
nion multiplication non-commutative.

Given two quaternions q1 and q2,

q1 = [s1,v1] = [s1 + x1i + y1j + z1k]
q2 = [s2, v2] = [s2 + x2i + y2j + z2k] (7.89)

the product q1q2, is given by

q1q2 = [(s1s2 − x1x2 − y1y2 − z1z2) + (s1x2 + s2x1 + y1z2 − y2z1)i
+(s1y2 + s2y1 + z1x2 − z2x1)j + (s1z2 + s2z1 + x1y2 − x2y1)k (7.90)

which can be rewritten using the dot and cross product notation as

q1q2 = [(s1s2 − v1 · v2), s1v2 + s2v1 + v1 × v2] (7.91)

7.7.4 The Inverse Quaternion

Given the quaternion
q = [s + xi + yj + zk] (7.92)

the inverse quaternion q−1 is

q−1 =
[s − xi − yj − zk]

|q|2 (7.93)

92 Mathematics for Computer Graphics

where |q| is the magnitude, or modulus, of q, and is equal to

‖q‖ =
√

s2 + x2 + y2 + z2 (7.94)

It can also be shown that

qq−1 = q−1q = 1 (7.95)

7.7.5 Rotating Points about an Axis

Basically, quaternions are associated with vectors rather than individual points.
Therefore, in order to manipulate a single vertex, we must first turn it into a
position vector, which has its tail vertex at the origin. A vertex can then be
represented in quaternion form by its equivalent position vector and a zero
scalar term. For example, a point P(x, y, z) is represented in quaternion form
by

p = [0 + xi + yj + zk] (7.96)

which can then be transformed into another position vector using the process
described below. The coordinates of the rotated point are the components of
the rotated position vector. This may seem an indirect process, but in reality
it turns out to be rather simple. Let’s now consider how this is achieved.

It can be shown that a position vector p can be rotated about an axis by
some angle using the following operation:

p′ = qpq−1 (7.97)

where the axis and angle of rotation are encoded within the unit quaternion
q, whose modulus is 1, and p′ is the rotated vector. For example, to rotate a
point P(x, y, z) through an angle θ about an axis, we use the following steps:

1 Convert the point P(x, y, z) to a quaternion p:

p = [0 + xi + yj + zk]

2 Define the axis of rotation as a unit vector u:

u = [xui + yuj + zuk]

3 Define the transforming quaternion q:

q = [cos(θ/2), sin(θ/2)u]

4 Define the inverse of the transforming quaternion q−1:

q−1 = [cos(θ/2), − sin(θ/2)u]

5 Compute p′:

p′ = qpq−1

7 Transformation 93

6 Unpack (x′, y′, z′)

(x′, y′, z′) p′ = [0 + x′i + y′j + z′k]

We can verify the action of the above transform with a simple example. Con-
sider the point P(0, 1, 1) in Figure 7.26 which is to be rotated 90◦ about the
y-axis. We can see that the rotated point P ′ has the coordinates (1, 1, 0),
which we will confirm algebraically. The point P is represented by a quater-
nion P, and is rotated by evaluating the quaternion P′:

Z X

Y

P(0, 1, 1) P ′(1, 1,0)

Fig. 7.26. The point P (0, 1, 1) is rotated to P ′(1, 1, 0) using a quaternion coincident
with the y-axis.

P′ = qPq−1

which will store the rotated coordinates. The axis of rotation is [j], therefore
the unit quaternion q is given by

q = [cos(90◦/2), sin(90◦/2)[0, 1, 0]]
= [cos(45◦), [0, sin(45◦), 0]]

The inverse quaternion q−1 is given by

q−1 =
[cos(90◦/2),− sin(90◦/2)[0, 1, 0]]

|q|2
but as q is a unit quaternion, the denominator |q|2 equals unity and can be
ignored. Therefore

q−1 = [cos(45◦), [0,− sin(45◦)0]]

Let’s evaluate qPq−1 in two stages: (qP)q−1.

1

qP = [cos(45◦), [0, sin(45◦), 0]] · [0, [0, 1, 1]]
= [− sin(45◦), [sin(45◦), cos(45◦), cos(45◦)]]

94 Mathematics for Computer Graphics

2

(qP)q−1 = [− sin(45◦), [sin(45◦), cos(45◦), cos(45◦)]]

·[cos(45◦), [0, − sin(45◦), 0]]

= [0, [2 sin(45◦) cos(45◦), 1, cos(45◦) cos(45◦) − sin(45◦) sin(45◦]]

P ′ = [0, [1, 1, 0]]

and the vector component of P ′ confirms that P is indeed rotated to (1, 1, 0).
We will evaluate one more example before continuing. Consider a rotation

about the z -axis as illustrated in Figure 7.27. The original point has coordi-
nates (0, 1, 1) and is rotated −90◦. From the figure we see that this should
finish at (1, 0, 1). This time the quaternion q is defined by

q = [cos(−90◦/2), sin(−90◦/2)[0, 0, 1]]

= [cos(45◦), [0, 0,− sin(45◦)]]

with its inverse
q−1 = [cos(45◦), [0, 0, sin(45◦]]

and the point to be rotated in quaternion form is P = [0, [0, 1, 1]]. Evaluating
this in two stages we have

1

qP = [cos(45◦), [0, 0,− sin(45◦)]] · [0, [0, 1, 1]]

= [sin(45◦), [sin(45◦), cos(45◦), cos(45◦)]]

Y

X
P' (1, 0, 1,)

P (0, 1, 1,)

Z

Fig. 7.27. The point P (0, 1, 1) is rotated −90◦ to P ′(1, 0, 1) using a quaternion
coincident with the z-axis.

7 Transformation 95

2

(pP)q−1 = [sin(45◦), [sin(45◦), cos(45◦), cos(45◦)]]

·[cos(45◦), [0, 0, sin(45◦)]]

= [0, [sin(90◦), cos(90◦), 1]]

The vector component of P ′ confirms that P is rotated to (1, 0, 1).

7.7.6 Roll, Pitch and Yaw Quaternions

Having already looked at roll, pitch and yaw rotations, we can now define
them as quaternions:

q roll = [cos(θ/2), sin(θ/2)[0, 0, 1]]

q pitch = [cos(θ/2), sin(θ/2)[1, 0, 0]]

q yaw = [cos(θ/2), sin(θ/2)[0, 1, 0]] (7.98)

where θ is the angle of rotation.
These quaternions can be multiplied together to create a single quaternion

representing a compound rotation. For example, if the quaternions are defined
as

qroll = [cos(roll/2), sin(roll/2)[0, 0, 1]]

qpitch = [cos(pitch/2), sin(pitch/2)[1, 0, 0]]

qyaw = [cos(yaw/2), sin(yaw/2)[0, 1, 0]] (7.99)

they can be concatenated to a single quaternion q:

q = qyawqpitchqroll = [s + xi + yj + zk] (7.100)

where

s = cos
(yaw

2

)
cos

(
pitch

2

)
cos

(
roll

2

)
+ sin

(yaw

2

)
sin

(
pitch

2

)
sin

(
roll

2

)

x = cos
(yaw

2

)
sin

(
pitch

2

)
cos

(
roll

2

)
+ sin

(yaw

2

)
cos

(
pitch

2

)
sin

(
roll

2

)

y = sin
(yaw

2

)
cos

(
pitch

2

)
cos

(
roll

2

)
− cos

(yaw

2

)
sin

(
pitch

2

)
sin

(
roll

2

)

z = cos
(yaw

2

)
cos

(
pitch

2

)
sin

(
roll

2

)
− sin

(yaw

2

)
sin

(
pitch

2

)
cos

(
roll

2

)

(7.101)

96 Mathematics for Computer Graphics

Let’s examine this compound quaternion with an example. For instance, given
the following conditions let’s derive a single quaternion q to represent the
compound rotation:

roll = 90◦

pitch = 180◦

yaw = 0◦

The values of s, x, y, z are

s = 0
x = cos(45◦)
y = − sin(45◦)
z = 0

and the quaternion q is

q = [0, [cos(45◦),− sin(45◦), 0]]

If the point P(1, 1, 1) is subjected to this compound rotation, the rotated
point is computed using the standard quaternion transform:

P′ = qPq−1

Let’s evaluate qPq−1 in two stages:

1

qP = [0, [cos(45◦),− sin(45◦), 0]] · [0, [1, 1, 1]]
= [0, [− sin(45◦),− cos(45◦), sin(45◦) + cos(45◦)]]

2

(qP)q−1 = [0, [− sin(45◦),− cos(45◦), sin(45◦) + cos(45◦)]]
·[0, [− cos(45◦), sin(45◦), 0]]

P′ = [0, [−1, −1, −1]]

Therefore, the coordinates of the rotated point are (−1, −1, −1), which
can be confirmed from Figure 7.28.

7.7.7 Quaternions in Matrix Form

There is a direct relationship between quaternions and matrices. For example,
given the quaternion [s + xi + yj + zk) the equivalent matrix is⎡

⎣ M11 M12 M13
M21 M22 M23
M31 M32 M33

⎤
⎦

7 Transformation 97

pitch = 180�

P ′ (−1, −1, −1)

(−1, 1, 1)

P (1, 1, 1)

Y

roll = 90�

X

Z

Fig. 7.28. The point P is subject to a compound roll of 90◦ and a pitch of 180◦. This
diagram shows the transform in two stages.

where

M11 = 1 − 2(y2 + z2)

M12 = 2(xy − sz)

M13 = 2(xz + sy)

M21 = 2(xy + sz)

M22 = 1 − 2(x2 + z2)

M23 = 2(yz − sx)

M31 = 2(xz − sy)

M32 = 2(yz + sx)

M33 = 1 − 2(x2 + y2) (7.102)

Substituting the following values of s, x, y, z :

s = 0

x = cos(45◦)

y = − sin(45◦)

z = 0

98 Mathematics for Computer Graphics

the matrix transformation is⎡
⎢⎣ x′

y′

z′

⎤
⎥⎦ =

⎡
⎢⎣ 0 −1 0

−1 0 0
0 0 −1

⎤
⎥⎦ ·

⎡
⎢⎣ x

y

z

⎤
⎥⎦

Substituting (1, 1, 1) for (x, y, z) the rotated point becomes (−1,−1,−1), as
shown in Figure 7.28.

7.7.8 Frames of Reference

A quaternion, or its equivalent matrix, can be used to rotate a vertex or
position a virtual camera. If unit quaternions are used, the associated matrix
is orthogonal, which means that its transpose is equivalent to rotating the
frame of reference in the opposite direction. For example, if the virtual camera
is oriented with a yaw rotation of 180◦, i.e. looking along the negative z -axis,
the orientation quaternion is [0, [0, 1, 0]]. Therefore s = 0, x = 0, y = 1, z = 0.
The equivalent matrix is ⎡

⎣ −1 0 0
0 1 0
0 0 −1

⎤
⎦

which is equal to its transpose. Therefore, a vertex (x, y, z) in world space has
coordinates (x′, y′, z′) in camera space and the transform is defined by⎡

⎣ x′

y′

z′

⎤
⎦ =

⎡
⎣ −1 0 0

0 1 0
0 0 −1

⎤
⎦ ·

⎡
⎣ x

y
z

⎤
⎦

If the vertex (x, y, z) is (1, 1, 0), (x′, y′, z′) becomes (−1, 1, 0), which is correct.
However, it is unlikely that the virtual camera will only be subjected to a sim-
ple rotation, as it will normally be translated from the origin. Consequently,
a translation matrix will have to be introduced as described above.

7.8 Transforming Vectors

The transforms described in this chapter have been used to transform single
points. However, a geometric database will contain not only pure vertices,
but also vectors, which must also be subject to any prevailing transform.
A generic transform Q of a 3D point can be represented by⎡

⎢⎢⎣
x′

y′

z′

1

⎤
⎥⎥⎦ = [Q] ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (7.103)

7 Transformation 99

and as a vector is defined by two points we can write⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ = [Q] ·

⎡
⎢⎢⎣

x2 − x1
y2 − y1
z2 − z1
1 − 1

⎤
⎥⎥⎦ (7.104)

where we see the homogeneous scaling term collapse to zero. This implies that
any vector [x y z]T can be transformed using⎡

⎢⎢⎣
x′

y′

z′

0

⎤
⎥⎥⎦ = [Q] ·

⎡
⎢⎢⎣

x
y
z
0

⎤
⎥⎥⎦ (7.105)

Let’s put this to the test by using a transform from an earlier example. The
problem concerned a change of axial system where a virtual camera was sub-
ject to the following:

roll = 180◦

pitch = 90◦

yaw = 90◦

tx = 2
ty = 2
tz = 0

and the transform is⎡
⎢⎢⎣

x′

y′

z′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −1 0 2
0 0 1 0

−1 0 0 2
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

When the point (1, 1, 0) is transformed it becomes (1, 0, 1), as shown in
Figure 7.29. But if we transform the vector

[
1 1 0

]T it becomes
[−1 0 −1

]T,
using the following transform⎡

⎢⎢⎣
−1

0
−1

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −1 0 2
0 0 1 0

−1 0 0 2
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦

which is correct with reference to Figure 7.29.

7.9 Determinants

Before concluding this chapter I would like to expand upon the role of the
determinant in transforms. Normally, determinants arise in the solution of

100 Mathematics for Computer Graphics

Y

Z
X

Z'

Y'

(1, 1, 0)

(2, 2, 0)

(1, 0, 1)' X '

Fig. 7.29. Vector [1 1 0]T is transformed to [−1 0 − 1]T .

linear equations such as

c1 = a1x + b1y

c2 = a2x + b2y (7.106)

where values of x and y are defined in terms of the other constants. Without
showing the solution, the values of x and y are given by

x =
c1b2 − c2b1

a1b2 − a2b1

y =
a1c2 − a2c1

a1b2 − a2b1
(7.107)

provided that the denominator a1b2 − a2b1 �= 0.
It is also possible to write the linear equations in matrix form as[

c1
c2

]
=

[
a1 b1
a2 b2

]
·
[

x
y

]
(7.108)

and we notice that the denominator comes from the matrix terms a1b2 −
a2b1. This is called the determinant, and is valid only for square matrices.
A determinant is defined as follows:∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ = a1b2 − a2b1 (7.109)

With this notation it is possible to rewrite the original linear equations as
x∣∣∣∣ c1 b1

c2 b2

∣∣∣∣
=

y∣∣∣∣ a1 c1
a2 c2

∣∣∣∣
=

1∣∣∣∣ a1 b1
a2 b2

∣∣∣∣
(7.110)

With a set of three linear equations:

d1 = a1x + b1y + c1z

d2 = a2x + b2y + c2z

d3 = a3x + b3y + c3z (7.111)

7 Transformation 101

the value of x is defined as

x =
d1b2c3 − d1b3c2 + d2b3c1 − d2b1c3 + d3b1c2 − d3b2c1

a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1
(7.112)

with similar expressions for y and z. Once more, the denominator comes from
the determinant of the matrix associated with the matrix formulation of the
linear equations: ⎡

⎣ d1
d2
d3

⎤
⎦ =

⎡
⎣ a1 b1 c1

a2 b2 c2
a3 b3 c3

⎤
⎦ ·

⎡
⎣ x

y
z

⎤
⎦ (7.113)

where∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1

which can be written as

a1

∣∣∣∣ b2 c2
b3 c3

∣∣∣∣ − a2

∣∣∣∣ b1 c1
b3 c3

∣∣∣∣ + a3

∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ (7.114)

Let’s now see what creates a zero determinant. If we write, for example

10 = 2x + y (7.115)

there are an infinite number of solutions for x and y, and it is impossible
to solve the equation. However, if we introduce a second equation relating x
and y :

4 = 5x − y (7.116)

we can solve for x and y using (7.107):

x =
10 × (−1) − 4 × 1
2 × (−1) − 5 × 1

=
−14
−7

= 2

y =
2 × 4 − 5 × 10

2 × (−1) − 5 × 1
=

−42
−7

= 6 (7.117)

therefore x = 2 and y = 6, which is correct.
But say the second equation had been

20 = 4x + 2y (7.118)

which would have created the pair of simultaneous equations

10 = 2x + y (7.119)

20 = 4x + 2y (7.120)

102 Mathematics for Computer Graphics

If we now solve for x and y we get

x =
10 × 2 − 20 × 1
2 × 2 − 4 × 1

=
0
0

= undefined

y =
2 × 20 − 4 × 10
2 × 2 − 4 × 1

=
0
0

= undefined

which yields undefined results. The reason for this is that (7.119) is the same
as (7.120) – the second equation is nothing more than twice the first equation,
and therefore brings nothing new to the relationship. When this occurs, the
equations are said to be linearly dependent.

Having shown the algebraic origins of the determinant, we can now go on
to investigate its graphical significance. Consider the transform[

x′

y′

]
=

[
a b
c d

]
·
[

x
y

]
(7.121)

The determinant of the transform is ad –cb. If we subject the vertices of a
unit-square to this transform, we create the situation shown in Figure 7.30.
The vertices of the unit-square are moved as follows:

(0, 0) (0, 0)
(1, 0) (a, c)
(1, 1) (a + b, c + d)
(0, 1) (b, d) (7.122)

From Figure 7.30 it can be seen that the area of the transformed unit-square
A′ is given by

area = (a + b)(c + d) − B − C − D − E − F − G

= ac + ad + cb + bd − 1
2
bd − cb − 1

2
ac − 1

2
bd − cb − 1

2
ac

= ad − cb (7.123)

which is the determinant of the transform. But as the area of the original
unit-square was 1, the determinant of the transform controls the scaling factor
applied to the transformed shape.

Let’s examine the determinants of two transforms. The first 2D transform
encodes a scaling of 2, and results in an overall area scaling of 4:[

2 0
0 2

]

and the determinant is ∣∣∣∣ 2 0
0 2

∣∣∣∣ = 4

7 Transformation 103

Y

b a

C D

B

(b, d)

(a, c)

A

E

FG c

d

X
ba

(0, 0)

(a + b, c + d)

Fig. 7.30. The inner parallelogram is the transformed unit square.

The second 2D transform encodes a scaling of 3 and a translation of (3, 3),
and results in an overall area scaling of 9:⎡

⎣ 3 0 3
0 3 3
0 0 1

⎤
⎦

and the determinant is

3
∣∣∣∣ 3 3

0 1

∣∣∣∣ − 0
∣∣∣∣ 0 3

0 1

∣∣∣∣ + 0
∣∣∣∣ 0 3

3 3

∣∣∣∣ = 9

These two examples demonstrate the extra role played by the elements of a
matrix.

7.10 Perspective Projection

Of all the projections employed in computer graphics, the perspective projec-
tion is the one most widely used. There are two stages to its computation:
the first stage involves converting world coordinates to the camera’s frame of
reference, and the second stage transforms camera coordinates to the projec-
tion plane coordinates. We have already looked at the transforms for locating
a camera in world space, and the inverse transform for converting world co-
ordinates to the camera’s frame of reference. Let’s now investigate how these
camera coordinates are transformed into a perspective projection.

We begin by assuming that the camera is directed along the z -axis as
shown in Figure 7.31. Positioned d units along the axis is a projection screen,

104 Mathematics for Computer Graphics

Xc

Xc
XP

Zc

Xp

xP

yP

(xc, yc, zc)

Fig. 7.31. The axial systems used to produce a perspective projection.

which will be used to capture a perspective projection of an object. Figure
7.31 shows that any point (xc, yc, zc) becomes transformed to (xs, ys, d). It
also shows that the screen’s x -axis is pointing in the opposite direction to the
camera’s x -axis, which can be compensated for by reversing the sign of xs
when it is computed.

Figure 7.32 shows plan and side views of the scenario depicted in Fig-
ure 7.31, which enables us to inspect the geometry and make the following
observations:

x

z
=

−xp

d
xp = −d

x

z
xp =

−y

z/d
y

z
=

yp

d
yp = d

y

z
yp =

y

z/d
(7.124)

This can be expressed in matrix as⎡
⎢⎢⎣

xs

ys

zs

W

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

At first this may seem strange, but if we multiply it out we get

[xp yp zp W]T = [−x y z z/d]T

and if we remember the idea behind homogeneous coordinates, we must divide
the terms xp, yp, zp by W to get the scaled terms, which produces

xp =
−x

z/d
, yp =

y

z/d
, zp =

z

z/d
= d

7 Transformation 105

Plan view

screen

X

d
z

Z

x

(x, y, z)

(xp, yp)

−xp

Side view

screen

Y

d
z

Z

y

(x, y, z)

(xp, yp)

yp

Fig. 7.32. The plan and side views for computing the perspective projection trans-
form.

which, after all, is rather elegant. Notice that this transform takes into account
the sign change that coours with the x-coordinate. Some books will leave this
sign reversal until the mapping is made to screen coordinates

7.11 Summary

The purpose of this chapter was to introduce transforms and matrices – I hope
this has been achieved. This end of the chapter is not really the end of the
subject, as one can do so much with matrices and quaternions. For example,
it would be interesting to see how a matrix behaves when some of its elements
are changed dynamically, and what happens when we interpolate between a
pair of quaternions. Such topics are addressed in later chapters.

8
Interpolation

Interpolation is not a branch of mathematics but rather a collection of tech-
niques the reader will find useful when solving computer graphics problems.
Basically, an interpolant is a way of changing one number into another. For
example, to change 2 into 4 we simply add 2, which is not very useful. The real
function of an interpolant is to change one number into another in, perhaps,
10 equal steps. Thus if we start with 2 and repeatedly add 0.2, this generates
the sequence 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8 and 4. These numbers could
then be used to translate, scale, rotate an object, move a virtual camera, or
change the position, colour or brightness of a virtual light source.

In order to repeat the above interpolant for different numbers we require
a formula, which is one of the first exercises of this chapter. We also need
to explore ways of controlling the spacing between the interpolated values.
In animation, for example, we often need to move an object very slowly and
gradually increase its speed. Conversely, we may want to bring an object to a
halt, making its speed less and less.

We start with the simplest of all interpolants: the linear interpolant.

8.1 Linear Interpolant

A linear interpolant generates equal spacing between the interpolated values
for equal changes in the interpolating parameter. In the introductory example
the increment 0.2 is calculated by subtracting the first number from the second
and dividing the result by 10, i.e. (4 − 2)/10 = 0.2. Although this works, it
is not in a very flexible form, so let’s express the problem differently. Given
two numbers n1 and n2, which represent the start and final values of the

108 Mathematics for Computer Graphics

interpolant, we require an interpolated value controlled by a parameter t that
varies between 0 and 1. When t = 0, the result is n1, and when t = 1, the
result is n2. A solution to this problem is given by

n = n1 + t(n2 − n1) (8.1)

for when n1 = 2, n2 = 4 and t = 0.5

n = 2 +
1
2
(4 − 2) = 3

which is a halfway point. Furthermore, when t = 0, n = n1, and when t =
1, n = n2, which confirms that we have a sound interpolant. However, it can
be expressed differently:

n = n1 + t(n2 − n1) (8.2)
n = n1 + tn2 − tn1 (8.3)
n = n1(1 − t) + n2t (8.4)

which shows what is really going on, and forms the basis for further
development. Figure 8.1 shows the graphs of (1 − t) and t over the range
0 to 1.
With reference to (8.4), we see that as t changes from 0 to 1, the (1− t) term
varies from 1 to 0. This effectively attenuates the value of n1 to zero over the
range of t, while the t term scales n2 from zero to its actual value. Figure 8.2
illustrates these two actions with n1 = 1 and n2 = 3. Notice that the terms
(1− t) and t sum to unity; this is not a coincidence. This type of interpolant
ensures that if it takes a quarter of n1, it balances it with three-quarters of n2,
and vice versa. Obviously we could design an interpolant that takes arbitrary
portions of n1 and n2, but that would lead to arbitrary results. Although
this interpolant is extremely simple, it is widely used in computer graphics
software. Just to put it into context, consider the task of moving an object

0 0.1 0.2 0.3 0.4 0.5

t

0.6 0.7 0.8 0.9 1

(1 − t) t

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 8.1. The graphs of (1 − t) and t over the range 0 to 1.

8 Interpolation 109

0

0.5

1

1.5

n
2

2.5

3

3.5

1(1 − t) + 3t

1(1 − t)

3t

0 0.1 0.2 0.3 0.4 0.5

t

0.6 0.7 0.8 0.9 1

Fig. 8.2. The top graph shows the result of linearly interpolating between values 1
and 3.

0 1 2 3
x

4 5

y

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 8.3. Interpolating between the points (1, 1) and (4, 3). Note that linear changes
in t give rise to equal spaces along the line.

between two locations (x1, y1, z1) and (x2, y2, z2). The interpolated position
is given by

x = x1(1 − t) + x2t

y = y1(1 − t) + y2t

z = z1(1 − t) + z2t (8.5)

for 0 ≤ t ≤ 1 The parameter t could be generated from two frame values
within an animation. What is assured by this interpolant, is that equal steps
in t result in equal steps in x, y and z. Figure 8.3 illustrates this linear spacing
with a 2D example. We can write (8.2) in matrix form as follows:

n = [(1 − t) t] ·
[

n1
n2

]
(8.6)

110 Mathematics for Computer Graphics

or

n = [t 1] ·
[−1 1

1 0

]
·
[

n1
n2

]
(8.7)

The reader can confirm that this generates identical results to the algebraic
form.

8.2 Non-Linear Interpolation

A linear interpolant ensures that equal steps in the parameter t give rise
to equal steps in the interpolated values; however, it is often required that
equal steps in t give rise to unequal steps in the interpolated values. We
can achieve this using a variety of mathematical techniques. For example, we
could use trigonometric functions or polynomials. To begin with, let’s look at
a trigonometric solution.

8.2.1 Trigonometric Interpolation

In Chapter 4 we noted that sin2(β) + cos2(β) = 1, which satisfies one of the
requirements of an interpolant: the terms must sum to 1. If β varies between
0 and π/2, cos2(β) varies between 1 and 0, and sin2(β) varies between 0 and 1,
which can be used to modify the two interpolated values n1 and n2 as follows:

n = n1 cos2(t) + n2 sin2(t) (8.8)

for 0 ≤ t ≤ π/2
The interpolation curves are shown in Figure 8.4.

If we make n1 = 1 and n2 = 3 in (8.8), we obtain the curves shown in
Figure 8.5. If we apply this interpolant to two 2D points in space, (1, 1) and
(4, 3), we obtain a straight-line interpolation, but the distribution of points is

0
0 5 10 15 20 25 30 35 40 45

Angle

50 55 60 65 70 75 80 85 90

0.2

0.4

0.6y

0.8

1

1.2

Fig. 8.4. The curves for cos2(β) and sin2(β).

8 Interpolation 111

0

0.5

1

1.5

n

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45

Degrees

50 55 60 65 70 75 80 85 90

Fig. 8.5. Interpolating between 1 and 3 using a trigonometric interpolant.

0 1 2 3

x

4 5
0

0.5

1

1.5

y

2

2.5

3

3.5

Fig. 8.6. Interpolating between two points (1, 1) and (4, 3). Note the non-linear
distribution of points.

non-linear, as shown in Figure 8.6. In other words, equal steps in t give rise
to unequal distances.

The main problem with this approach is that it is impossible to change
the nature of the curve -it is a sinusoid, and its slope is determined by the
interpolated values. One way of gaining control over the interpolated curve is
to use a polynomial, which is the subject of the next section.

8.2.2 Cubic Interpolation

To begin with, let’s develop a cubic blending function that will be similar
to the previous sinusoidal one. This can then be extended to provide extra
flexibility. A cubic polynomial will form the basis of the interpolant

V1 = at3 + bt2 + ct + d (8.9)

and the final interpolant will be of the form

n = [V1 V2] ·
[

n1
n2

]
(8.10)

112 Mathematics for Computer Graphics

The task is to find the values of the constants associated with the polynomials
V1 and V2. The requirements are:

1. A cubic function V2 must grow from 0 to 1 for 0 ≤ t ≤ 1.
2. The slope at a point t, must equal the slope at the point (1 − t). This

ensures slope symmetry over the range of the function.
3. The value V2 at any point t must also produce (1 − V2) at (1 − t). This

ensures curve symmetry.
• To satisfy the first requirement:

V2 = at3 + bt2 + ct + d (8.11)

therefore, t = 0, d = 0 for V2 = 0, and when t = 1, V2 = a + b + c.
• To satisfy the second requirement, we differentiate V2 to obtain the slope

dV2

dt
= 3at2 + 2bt + c = 3a(1 − t)2 + 2b(1 − t) + c (8.12)

and equating constants we discover c = 0 and 0 = 3a + 2b
• To satisfy the third requirement,

at3 + bt2 = 1 − [a(1 − t)3 + b(1 − t)2] (8.13)

where we discover 1 = a + b. But 0 = 3a + 2b, therefore a = −2 and b = 3.
Therefore

V2 = −2t3 + 3t2 (8.14)

To find the curve’s mirror curve, which starts at 1 and collapses to 0 as t
moves from 0 to 1, we subtract (8.14) from 1:

V1 = 2t3 − 3t2 + 1 (8.15)

Therefore, the two polynomials are

V2 = −2t3 + 3t2

V1 = 2t3 − 3t2 + 1 (8.16)

and are shown in Figure 8.7. They can be used as interpolants as follows:

n = n1V1 + n2V2 (8.17)

which in matrix form is

n =
[
2t3 − 3t2 + 1 − 2t3 + 3t2

] · [n1
n2

]
(8.18)

n =
[
t3 t2 t1 1

] ·
⎡
⎢⎢⎣

2 −2
−3 3

0 0
1 0

⎤
⎥⎥⎦ ·

[
n1
n2

]
(8.19)

8 Interpolation 113

0

0.2

0.4

0.6y
0.8

1

1.2
2t 3 − 3t 2 + 1 −2t 3 + 3t 2

0 0.1 0.2 0.3 0.4 0.5

t

0.6 0.7 0.8 0.9 1

Fig. 8.7. Two cubic interpolants.

0
0 0.1 0.2 0.3 0.4 0.5

t

0.6 0.7 0.8 0.9 1

0.5

1

1.5

n

2

2.5

3

3.5

Fig. 8.8. Interpolating between 1 and 3 using a cubic interpolant.

If we let n1 = 1 and n2 = 3 we obtain the curves shown in Figure 8.8.
And if we apply the interpolant to the points (1, 1) and (4, 3) we obtain the
curves shown in Figure 8.9. This interpolant can be used to blend any pair
of numbers together. But say we wished to associate other qualities with the
numbers n1 and n2, such as their tangent vectors s1 and s2. Perhaps we could
interpolate these alongside n1 and n2. In fact this can be done, as we shall
see.

The requirement is to modulate the interpolating curve in Figure 8.8 with
two further cubic curves. One curve blends out the tangent vector s1 associated
with n1, and the other blends in the tangent vector s2 associated with n2. Let’s
begin with a cubic polynomial to blend s1 to zero:

Vout = at3 + bt2 + ct + d (8.20)

Vout must equal zero when t = 0 and t = 1, otherwise it will disturb the start
and end values. Therefore d = 0, and

a + b + c = 0 (8.21)

114 Mathematics for Computer Graphics

0

0.5

1

1.5

y

2

2.5

3

3.5

0 1 2 3
x

4 5

Fig. 8.9. A cubic interpolant between points (1, 1) and (4, 3).

The rate of change of Vout relative to t (i.e.
dVout

dt
) must equal 1 when t = 0,

so it can be used to multiply s1. When t = 1,
dVout

dt
must equal 0 to attenuate

any trace of s1:

dVout

dt
= 3at2 + 2bt + c (8.22)

but
dVout

dt
= 1 when t = 0, and

dVout

dt
= 0 when t = 1. Therefore c = 1, and

3a + 2b + 1 = 0 (8.23)

But using (8.21) means that b = −2 and a = 1. Therefore, the polynomial
Vout has the form

Vout = t3 − 2t2 + t (8.24)

Using a similar argument, one can prove that the function to blend in s2 equals

Vin = t3 − t2 (8.25)

Graphs of (8.24) and (8.25) are shown alongside graphs of (8.16) in Figure 8.10.
The complete interpolating function looks like

n = [2t3 − 3t2 + 1 − 2t3 + 3t2 t3 − 2t2 + t t3 − t2] ·

⎡
⎢⎢⎣

n1
n2
s1
s2

⎤
⎥⎥⎦ (8.26)

8 Interpolation 115

−0.4

−0.2

0
0 0.1 0.2 0.3 0.4 0.5

t

0.6 0.7 0.8 0.9 1

0.2

0.4n

0.6

0.8

1

1.2

Fig. 8.10. The four Hermite interpolating curves.

and, unpacking the constants and polynomial terms, we obtain

n = [t3 t2 t1 1] ·

⎡
⎢⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

n1
n2
s1
s2

⎤
⎥⎥⎦ (8.27)

This type of interpolation is called Hermite interpolation, after the French
mathematician Charles Hermite (1822–1901). Hermite also proved in 1873
that e is transcendental (see page 9).

This interpolant can be used as shown above to blend a pair of numerical
values and their tangent vectors, or it can be used to interpolate between
points in space. To demonstrate the latter we will explore a 2D example, and
it is very easy to implement the technique in 3D.

Figure 8.11 illustrates shows how two points (0, 0) and (1, 1) are to be
connected by a cubic curve that responds to the initial and final tangent
vectors. At the start point (0, 1) the tangent vector is [−5 0]T, and at the
final point (1, 1) the tangent vector is [0 − 5]T. The x and y interpolants are

x = [t3 t2 t1 1] ·

⎡
⎢⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0
1

−5
0

⎤
⎥⎥⎦

y = [t3 t2 t1 1] ·

⎡
⎢⎢⎣

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0
1
0

−5

⎤
⎥⎥⎦

116 Mathematics for Computer Graphics

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

y

x
−1 −0.5 0 0.5 1 1.5

[−5 0]

[0 −5]

Fig. 8.11. A Hermite curve between the points (0, 0) and (1, 1) with tangent vectors
(−5, 0) and (0, −5).

which become

x = [t3 t2 t1 1] ·

⎡
⎢⎢⎣
−7
13
−5

0

⎤
⎥⎥⎦ = −7t3 + 13t2 − 5t

y = [t3 t2 t1 1] ·

⎡
⎢⎢⎣
−7

8
0
0

⎤
⎥⎥⎦ = −7t3 + 8t2

When these polynomials are plotted over the range 0 ≤ t ≤ 1, we obtain the
curve shown in Figure 8.11. We have now reached a point where are starting
to discover how parametric polynomials can be used to generate space curves,
which is the subject of the next chapter. So, to conclude this chapter on
interpolants, we will take a look at interpolating vectors.

8.3 Interpolating Vectors

So far we have been interpolating between a pair of numbers. Now the question
arises: can we use the same interpolants for vectors? Perhaps not, because
a vector contains both magnitude and direction, and when we interpolate
between two vectors we must ensure that both quantities are preserved. For
example, if we interpolated the x - and y-components of the vectors [2 3]T and
[4 7]T, the in-between vectors would preserve the change of orientation but
ignore the change in magnitude. To preserve both, we must understand how
the interpolation should operate.

Figure 8.12 shows two unit vectors V1 and V2 separated by an angle θ. The
interpolated vector V can be defined as a proportion of V1 and a proportion

8 Interpolation 117

Y

V2

V1

V

(1−t)q

(1−t)qn

b

a

m

X

q

tq
q

Fig. 8.12. Vector V is derived from a parts of V1 and b parts of V2.

of V2:

V = aV1 + bV2 (8.28)

Let’s define the values of a and b such that they are a function of the separating
angle θ. Vector V is tθ from V1 and (1 − t)θ from V2, and it is evident from
Figure 8.12 that using the sine rule

a

sin((1 − t)θ)
=

b

sin(tθ)
(8.29)

and furthermore

m = a cos(tθ) (8.30)
n = b cos((1 − t)θ) (8.31)

m + n = 1 (8.32)

From (8.29),

b =
a sin(tθ)

sin((1 − t)θ)
(8.33)

and from (8.32) we get

a cos(tθ) +
a sin(tθ) cos((1 − t)θ)

sin((1 − t)θ)
= 1

Solving for a we find

a =
sin((1 − t)θ)

sin(θ)
and b =

sin(tθ)
sin(θ)

118 Mathematics for Computer Graphics

Therefore, the final interpolant is

V =
sin((1 − t)θ)

sin(θ)
V1 +

sin(tθ)
sin(θ)

V2 (8.34)

To see how this operates, let’s consider a simple exercise of interpolating

between two unit vectors [1 0]T and
[
− 1√

2
1√
2

]T
. The value of θ is the angle

between the two vectors: 135◦. (8.34) is used to interpolate the x -components
and the y-components individually:

Vx =
sin((1 − t)135◦)

sin(135◦)
× (1) +

sin(t135◦)
sin(135◦)

×
(
− 1√

2

)

Vy =
sin((1 − t)135◦)

sin(135◦)
× (0) +

sin(t135◦)
sin(135◦)

×
(

1√
2

)

Figure 8.13 shows the interpolating curves and Figure 8.14 shows the positions
of the interpolated vectors, and a trace of the interpolated vectors.
Two observations on (8.34):

• The angle θ is the angle between the two vectors, which, if not known, can
be computed using the dot product.

• Secondly, the range of θ is give by 0 ≤ θ ≤ 180◦, because when θ = 180◦

the denominator collapses to zero. To confirm this we will repeat (8.34)
for θ = 179◦. The result is shown in Figure 8.15, which reveals clearly that
the interpolant works normally over this range. One more degree, however,
and it fails!

So far, we have only considered unit vectors. Now let’s see how the inter-
polant responds to vectors of different magnitudes. As a test, we can input
the following vectors to (8.34):

V1 =
[

2
0

]
and V2 =

[
0
1

]

−0.8
−0.6
−0.4
−0.2

0

0.2n

0.4
0.6

0.8
1

1.8

0 13.5 27 40.5 54 67.5

Angle

81 94.5 108 121.5 135

Fig. 8.13. Curves of the two parts of (8.34).

8 Interpolation 119

1.2

1

0.8

0.6

0.4

0.2

0
−1 −0.5 0 0.5 1 1.5

x

y

Fig. 8.14. A trace of the interpolated vectors between [1 0]T and [− 1√
2

1√
2
]T .

y

x

1.2

1

0.8

0.6

0.4

0.2

0
−1.5 −1 −0.5 0 0.5 1 1.5

Fig. 8.15. Interpolating between two vectors 179◦ apart.

The separating angle θ = 90◦, and the result is shown in Figure 8.16. Note
how the initial length of V1 reduces from 2 to 1 over 90◦. It is left to the reader
to examine other combinations of vectors. But there is one more application
for this interpolant, and that is with quaternions.

8.4 Interpolating Quaternions

It just so happens that the interpolant used for vectors also works with quater-
nions. Which means that, given two quaternions q1 and q2, the interpolated
quaternion q is given by

q =
sin((1 − t)θ)

sin(θ)
q1 +

sin(tθ)
sin(θ)

q2 (8.35)

The interpolant is applied individually to the four terms of the quaternion.

120 Mathematics for Computer Graphics

1.2

1

0.8

0.6

0.4

0.2

0
0 0.5 1 1.5 2 2.5

y

x

Fig. 8.16. Interpolating between the vectors [2 0]T and [0 1]T .

When interpolating vectors, θ is the angle between the two vectors. If this
is not known, it can be derived using the dot product formula:

cos(θ) =
V1 · V2

‖V1‖ ‖V2‖ (8.36)

cos(θ) =
x1x2 + y1y2 + z1z2

‖V1‖ ‖V2‖
When interpolating quaternions, θ is discovered by taking the 4D dot product
of the two quaternions:

cos(θ) =
q1 · q2

‖q1‖ ‖q2‖

cos(θ) =
s1s2 + x1x2 + y1y2 + z1z2

‖q1‖ ‖q2‖
If we are using unit quaternions,

cos(θ) = s1s2 + x1x2 + y1y2 + z1z2 (8.37)

We are now in a position to demonstrate how to interpolate between a pair of
quaternions. For example, say we have two quaternions q1 and q2 that rotate
0◦ and 90◦ about the z -axis respectively:

q1 =
[
cos

(
0◦

2

)
, sin

(
0◦

2

)
[0, 0, 1]

]

q2 =
[
cos

(
90◦

2

)
, sin

(
90◦

2

)
[0, 0, 1]

]

which become

q1 = [1, [0, 0, 0]

q2 = [0.7071, [0, 0, 0.7071]]

8 Interpolation 121

Any interpolated quaternion can be found by the application of (8.35). But
first, we need to find the value of θ using (8.37):

cos(θ) = 0.7071 + 0 + 0 + 0

θ = 45◦

Now when t = 0.5, the interpolated quaternion is given by

q =
sin(45◦

2)
sin(45◦)

[1, [0, 0, 0]] +
sin(45◦

2)
sin(45◦)

[0.7071, [0, 0, 0.7071]]

q = 0.541196[1, [0, 0, 0]] + 0.541196[0.7071, [0, 0, 0.7071]]

q = [0.541196, [0, 0, 0]] + [0.382683, [0, 0, 0.382683]]

q = [0.923879, [0, 0, 0.382683]]

Although it is not obvious, this interpolated quaternion is a unit quaternion,
because the square root of the sum of the squares is 1. It should rotate a point
about the z -axis, halfway between 0◦ and 90◦, i.e. 45◦. We can test that this
works with a simple example.

Take a point (1, 0, 0) and subject it to the standard quaternion operation:

P′ = qPq−1

To keep the arithmetic work to a minimum, we substitute a = 0.923879 and
b = 0.382683. Therefore

q = [a, [0, 0, b]] and q−1 = [a, [0, 0, −b]]
P′ = [a, [0, 0, b]] × [0, [1, 0, 0]] × [a, [0, 0, −b]]
P′ = [0, [a, b, 0]] × [a, [0, 0, −b]]
P′ = [0, [a2 − b2, 2ab, 0]]
P′ = [0, [0.7071, 0.7071, 0]]

Therefore, (1, 0, 0) is rotated to (0.7071, 0.7071, 0), which is correct!

8.5 Summary

This chapter has covered some very interesting, yet simple ideas about chang-
ing one number into another. In the following chapter we will develop these
ideas and see how we design algebraic solutions to curves and surfaces.

9
Curves and Patches

In this chapter we investigate the foundations of curves and surface patches.
This is a very large and complex subject, and it is impossible for us to delve
too deeply. However, we can explore many of the ideas that are essential to
understanding the mathematics behind 2D and 3D curves and how they are
developed to produce surface patches. Once you have understood these ideas
you will be able to read more advanced texts and develop a wider knowledge.

In the previous chapter we saw how polynomials were used as interpolants
and blending functions. We will now see how these can form the basis of
parametric curves and patches. To begin with, let’s start with the humble
circle.

9.1 The Circle

The circle has a very simple equation:

x2 + y2 = R2 (9.1)

where R is the radius. Although this equation has its uses, it is not very
convenient for drawing the curve. What we really want are two functions that
determine the coordinates of any point on the circumference in terms of some
parameter. Figure 9.1 shows a scenario where the x - and y-coordinates are
given by

x = R cos(t)
y = R sin(t) 0 ≤ t ≤ 2π (9.2)

124 Mathematics for Computer Graphics

R
y

X

t

x

Y

Fig. 9.1. The circle can be drawn by tracing out a series of points on the circumference.

By varying the parameter t over the range 0 to 2π we trace out the curve of
the circumference. In fact, by selecting a suitable range of t we can isolate
any portion of the circle.

9.2 The Ellipse

The equation for an ellipse is

x2

R2
maj

+
y2

R2
min

= 1 (9.3)

but its parametric form is

x = Rmaj cos(t)
y = Rmin sin(t) 0 ≤ t ≤ 2π (9.4)

where Rmaj and Rmin are the major and minor radii respectively, as shown in
Figure 9.2.

In the previous chapter we saw how a Hermite curve could be developed
using cubic polynomials and tangent slope vectors. Equation (8.27) gave the
x - and y-coordinates for a 2D curve, and there is no reason why it could
not be extended to give the z -coordinate for a 3D curve. The tangent slope
vectors would also have to be modified to form the end conditions in three
dimensions.

We will now examine a very useful parametric curve called a Bézier curve,
named after its inventor Pierre Bézier.

9 Curves and Patches 125

Rmaj

Rmin

X

Y

Fig. 9.2. An ellipse showing the major and minor radii.

9.3 Bézier Curves

Two people, working for competing French car manufacturers, are associated
with what are now called Bézier curves: Paul de Casteljau, who worked at
Citroën, and Pierre Bézier, who worked at Rénault. De Casteljau’s work was
slightly ahead of Bézier, but because of Citroën’s policy of secrecy it was
never published, so Bézier’s name has since been associated with the theory
of polynomial curves and surfaces. Casteljau started his research work in 1959,
but his reports were only discovered in 1975, by which time Bézier had already
become known for his special curves and surfaces.

9.3.1 Bernstein Polynomials

Bézier curves employ Bernstein polynomials, which were described by S. Bern-
stein in 1912. They are expressed as follows:

Bn
i (t) =

(
n
i

)
ti(1 − t)n−i (9.5)

where
(

n
i

)
is shorthand for the number of selections of i different items from

n distinguishable items when the order of selection is ignored, and equals

n!
(n − i)!i!

(9.6)

where, for example, 3! (factorial 3) is shorthand for 3 × 2 × 1.
When (9.6) is evaluated for different values of i and n, we discover the

pattern of numbers shown in Table 9.1. This pattern of numbers is known as
Pascal’s triangle. In western countries they are named after a 17th century
French mathematician, even though they had been described in China as early
as 1303 in Precious Mirror of the Four Elements by the Chinese mathemati-
cian Chu Shih-chieh. The pattern represents the coefficients found in binomial
expansions. For example, the expansion of (x + a)n for different values of n is

126 Mathematics for Computer Graphics

Table 9.1. Pascal’s triangle

i

n 0 1 2 3 4 5 6

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

(x + a)0 = 1
(x + a)1 = 1x + 1a
(x + a)2 = 1x2 + 2ax + 1a2

(x + a)3 = 1x3 + 3ax2 + 3a2x + 1a3

(x + a)4 = 1x4 + 4ax3 + 6a2x2 + 4a3x + 1a4

which reveals Pascal’s triangle as coefficients of the polynomial terms.
Pascal, however, recognized other qualities in the numbers, in that they

described the odds governing combinations. For example, to determine the
probability of any girl–boy combination in a family of 6 children, we sum the
numbers in the 6th row of Pascal’s triangle:

1 + 6 + 15 + 20 + 15 + 6 + 1 = 64.

The number (1) at the start and end of the 6th row represent the chances of
getting 6 boys or 6 girls, i.e. 1 in 64. The next number (6) represents the next
most likely combination: 5 boys and 1 girl, or 5 girls and 1 boy, i.e. 6 in 64.
The centre number (20) applies to 3 boys and 3 girls, for which the chances
are 20 in 64.

Thus the
(

n
i

)
term in (9.5) is nothing more than a generator for Pascal’s

triangle. The powers of t and (1 − t) in (9.5) appear as shown in Table 9.2
for different values of n and i. When the two sets of results are combined,
we get the complete Bernstein polynomial terms shown in Table 9.3. One
very important property of these terms is that they sum to unity, which is an
important feature of any interpolant.

As the sum of (1 − t) and t is 1,

((1 − t) + t)n = 1 (9.7)

which is why we can use the binomial expansion of (1−t) and t as interpolants.
When n = 2 we obtain the quadratic form

(1 − t)2 2t(1 − t) t2 (9.8)

9 Curves and Patches 127

Table 9.2. Expansion of the terms t and (1 − t)

i

n 0 1 2 3 4

1 t (1 − t)
2 t2 t(1 − t) (1 − t)2

3 t3 t2(1 − t) t(1 − t)2 (1 − t)3

4 t4 t3(1 − t) t2(1 − t)2 t(1 − t)3 (1 − t)4

Table 9.3. The Bernstein polynomial terms

i

n 0 1 2 3 4

1 1t 1(1 − t)
2 1t2 2t(1 − t) 1(1 − t)2

3 1t3 3t2(1 − t) 3t(1 − t)2 1(1 − t)3

4 1t4 4t3(1 − t) 6t2(1 − t)2 4t(1 − t)3 1(1 − t)4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5

t

0.6 0.7 0.8 0.9 1

Fig. 9.3. The graphs of the quadratic Bernstein polynomials.

Figure 9.3 shows the graphs of the three polynomial terms of (9.8). The (1−t)2

graph starts at 1 and decays to zero, whereas the t2 graph starts at zero and
rises to 1. The 2t(1 − t) graph starts at zero, reaches a maximum of 0.5 and
returns to zero. Thus the central polynomial term has no influence at the
end-points where t = 0 and t = 1.

We can use these three terms to interpolate between a pair of values as
follows:

V = V1(1 − t)2 + 2t(1 − t) + V2t
2 (9.9)

If V1 = 1 and V2 = 3 we obtain the curve shown in Figure 9.4. But there
is nothing preventing us from multiplying the middle term 2t(1 − t) by any
arbitrary number Vc:

V = V1(1 − t)2 + Vc2t(1 − t) + V2t
2 (9.10)

128 Mathematics for Computer Graphics

3.5

3

2.5

2

1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5

t

0.6 0.7 0.8 0.9 1

Fig. 9.4. Bernstein interpolation between the values 1 and 3.

3.5

3

2.5

2

1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5

t
0.6 0.7 0.8 0.9 1

Fig. 9.5. Bernstein interpolation between values 1 and 3 with Vc = 3.

3.5

3

2.5

2

1.5

1

0.5

0
1 2 3 4 5 6

t
7 8 9 10 11

Fig. 9.6. Bernstein interpolation between values 1 and 3 for different values of Vc.

For example, if Vc = 3 we obtain the graph shown in Figure 9.5, which is
totally different from Figure 9.4. As Bézier observed, the value of Vc provides
an excellent mechanism for determining the shape of the curve between two
values. Figure 9.6 shows a variety of graphs for different values of Vc. A very
interesting effect occurs when the value of Vc is set midway between V1 and
V2. For example, when V1 = 1 and V2 = 3 and Vc = 2, we obtain linear
interpolation between V1 and V2, as shown in Figure 9.7.

9 Curves and Patches 129

3.5

3

2

2.5

1.5

1

0.5

0
0 0.2 0.4 0.6

t

0.8 1 1.2

Fig. 9.7. Linear interpolation using a quadratic Bernstein interpolant.

9.3.2 Quadratic Bézier Curves

Quadratic Bézier curves are formed by using Bernstein polynomials to in-
terpolate between the x -, y- and z -coordinates associated with the start- and
end-points forming the curve. For example, we can draw a 2D quadratic Bézier
curve between (1, 1) and (4, 3) using the following equations:

x = 1(1 − t)2 + xc2t(1 − t) + 4t2

y = 1(1 − t)2 + yc2t(1 − t) + 3t2 (9.11)

But what should be the values of (xc, yc)? Well, this is entirely up to us.
The position of this control vertex determines how the curve moves between
(1, 1) and (4, 3). A Bézier curve possesses interpolating and approximating
qualities: the interpolating feature ensures that the curve passes through the
end-points, while the approximating feature shows how the curve passes close
to the control point. To illustrate this, if we make xc = 3 and yc = 4 we
obtain the curve shown in Figure 9.8, which shows how the curve intersects
the end-points, but misses the control point. It also highlights two important
features of Bézier curves: the convex hull property, and the end slopes of the
curve.

The convex hull property implies that the curve is always contained within
the polygon connecting the end and control points. In this case the curve is
inside the triangle formed by the vertices (1, 1), (3, 4) and (4, 3). The slope of
the curve at (1, 1) is equal to the slope of the line connecting the start point
to the control point (3, 4), and the slope of the curve at (4, 3) is equal to the
slope of the line connecting the control point (3, 4) to the end-point (4, 3).
Naturally, these two qualities of Bézier curves can be proved mathematically.

Before moving on, there are two further points to note:

• No restrictions are placed on the position of (xc, yc) – it can be anywhere.
• Simply including z -coordinates for the start, end and control vertices cre-

ates 3D curves.

130 Mathematics for Computer Graphics

4.5
4

3.5
3

2.5
2

1.5
1

0.5
0

0 1 2 3 4 5
x

y

Fig. 9.8. Quadratic Bézier curve between (1, 1) and (4, 3), with (3, 4) as the control
vertex.

9.3.3 Cubic Bernstein Polynomials

One of the problems with quadratic curves is that they are so simple. If we
wanted to construct a complex curve with several peaks and valleys, we would
have to join together a large number of such curves. A cubic curve, on the
other hand, naturally supports one peak and one valley, which simplifies the
construction of more complex curves.

When n = 3 in (9.7), we obtain the following terms:

((1 − t) t)3 = (1 − t)3 + 3t(1 − t)2 + 3t2(1 − t) + t3 (9.12)

which can be used as a cubic interpolant, as

V = V1(1 − t)3 + Vc13t(1 − t)2 + Vc23t2(1 − t) + V2t
3 (9.13)

Once more the terms sum to unity, and the convex hull and slope properties
also hold. Figure 9.9 shows the graphs of the four polynomial terms.

This time we have two control values, Vc1 and Vc2. These can be set to any
value, independent of the values chosen for V1 and V2. To illustrate this, let’s

0
0 0.1 0.2 0.3 0.4 0.5

t
0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

1.2

Fig. 9.9. The cubic Bernstein polynomial curves.

9 Curves and Patches 131

3.5

3

2.5

2

1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5

t
0.6 0.7 0.8 0.9 1

Fig. 9.10. The cubic Bernstein polynomial through the values 1, 2.5,−2.5, 3.

consider an example of blending between values 1 and 3, with Vc1 and Vc2 set
to 2.5 and −2.5 respectively. The blending curve is shown in Figure 9.10.

The next step is to associate the blending polynomials with x - and y-
coordinates:

x = x1(1 − t)3 + xc13t(1 − t)2 + xc23t2(1 − t) + x2t
3

y = y1(1 − t)3 + yc13t(1 − t)2 + yc23t2(1 − t) + y2t
3 (9.14)

Evaluating (9.14) with the following points:

(x1, y1) = (1, 1) (xc1, yc1) = (2, 3)
(xc2, yc2) = (3, −2) (x2, y2) = (4, 3)

we obtain the cubic Bézier curve as shown in Figure 9.11, which also shows
the guidelines between the end and control points.

Just to show how consistent Bernstein polynomials are, let’s set the val-
ues to

(x1, y1) = (1, 1) (xc1, yc1) = (2, 1.666)
(xc2, yc2) = (3, 2.333) (x2, y2) = (4, 3)

−3

−2

−1

0

1

2

3

4

y

1 2 3 4 50

x

Fig. 9.11. A cubic Bézier curve.

132 Mathematics for Computer Graphics

3.5

3

2.5

2

1.5

1

0.5

0
0 1 2 3

x

4 5

y

Fig. 9.12. A cubic Bézier line.

where (xc1, yc1) and (xc2, yc2) are points one-third and two-thirds between
the start and final values. As we found in the quadratic case, where the single
control point was halfway between the start and end values, we obtain linear
interpolation as shown in Figure 9.12.

Mathematicians are always interested in finding how to express formulae
in compact and precise forms, so they have devised an elegant way of abbrevi-
ating (9.11) and (9.14). Equation (9.11) describes the three polynomial terms
for generating a quadratic Bézier curve, and (9.14) describes the four poly-
nomial terms for generating a cubic Bézier curve. To begin with, quadratic
equations are called second-degree equations, and cubics are called third-degree
equations. In the original Bernstein formulation,

Bn
i (t) =

(
n
i

)
ti(1 − t)n−i (9.15)

n represents the degree of the polynomial, and i, which has values between
0 and n, creates the individual polynomial terms. These terms are then used
to multiply the coordinates of the end and control points. If these points are
stored as a vector P, a point p(t) on the curve can be written as

p(t) =
(

n
i

)
ti(1 − t)n−iPi for 0 ≤ i ≤ n (9.16)

or

p(t) =
n∑

i=0

(
n
i

)
ti(1 − t)n−iPi (9.17)

or

p(t) =
n∑

i=0

Bn
i (t)Pi (9.18)

For example, a point p(t) on a quadratic curve is represented by

p(t) = 1t0(1 − t)2P0 + 2t1(1 − t)1P1 + 1t2(1 − t)0P2 (9.19)

9 Curves and Patches 133

You will discover (9.17) and (9.18) used in more advanced texts to describe
Bézier curves. Although they may initially appear intimidating, you should
now find them relatively easy to understand.

9.4 A recursive Bézier Formula

Note that (9.17) explicitly describes the polynomial terms needed to construct
the blending terms. With the use of recursive functions (a recursive function
is a function that calls itself), it is possible to arrive at another formulation
that leads towards an understanding of B-splines. To begin, we need to ex-

press
(

n
i

)
in terms of lower terms, and because the coefficients of any row

in Pascal’s triangle are the sum of the two coefficients immediately above, we
can write (

n
i

)
=

(
n − 1

i

)
+

(
n − 1
i − 1

)
(9.20)

Therefore, we can write

Bn
i (t) =

(
n − 1

i

)
ti(1 − t)n−i +

(
n − 1
i − 1

)
ti(1 − t)n−i

Bn
i (t) = (1 − t)Bn−1

i (t) + tBn−1
i−1 (t) (9.21)

As with all recursive functions, some condition must terminate the process: in
this case it is when the degree is zero. Consequently, B0

0(t) ≡ 1 and Bn
j (t) ≡ 0

for j < 0.

9.5 Bézier Curves Using Matrices

As we have already seen, matrices provide a very compact notation for alge-
braic formulae. So let’s see how Bernstein polynomials lend themselves to this
form of notation. Recall (9.11), which defines the three terms associated with
a quadratic Bernstein polynomial. These can be expanded to

(1 − 2t + t2) (2t − 2t2)(t2) (9.22)

and can be written as the product of two matrices:

[t2 t 1] ·
⎡
⎣ 1 −2 1
−2 2 0

1 0 0

⎤
⎦ (9.23)

This means that (9.13) can be expressed as

V = [t2 t 1] ·
⎡
⎣ 1 −2 1
−2 2 0

1 0 0

⎤
⎦ ·

⎡
⎣ V1

Vc

V2

⎤
⎦ (9.24)

134 Mathematics for Computer Graphics

and (9.14) as

p(t) = [t2 t 1] ·
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦ ·

⎡
⎣ P1

Pc

P2

⎤
⎦ (9.25)

where p(t) is any point on the curve, and P1, Pc and P2 are the start, control
and end-points respectively.

A similar development can be used for a cubic Bézier curve, which has the
following matrix formulation:

p(t) = [t3 t2 t 1] ·

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

P1
Pc1
Pc2
P2

⎤
⎥⎥⎦ (9.26)

There is no doubt that Bézier curves are very useful, and they find their
way into all sorts of applications. Perhaps their one weakness, however, is
that whenever an end or control vertex is repositioned, the entire curve is
modified. So let’s examine another type of curve that prevents this from hap-
pening: B-splines. But before we consider their cubic form, let’s revisit linear
interpolation between multiple values.

9.5.1 Linear Interpolation

To interpolate linearly between two values V0 and V1, we use the following
interpolant:

V (t) = V0(1 − t) + V1t for 0 ≤ t ≤ 1 (9.27)

But say we have to interpolate continuously between three values on a lin-
ear basis, i.e. V0, V1, V2, with the possibility of extending the technique to
any number of values. One solution is to use a sequence of parameter values
t1, t2, t3 that are associated with the given values of V, as shown in Figure
9.13. For the sake of symmetry V0 is associated with the parameter range t0
to t2, V1 is associated with the parameter range t1 to t3, and V2 is associ-
ated with the parameter range t2 to t4. This sequence of parameters is called
a knot vector. The only assumption we make about the knot vector is that
t0 ≤ t1 ≤ t2 ≤, etc.

Now let’s invent a linear blending function B1
i (t) whose subscript i is used

to reference values in the knot vector. We want to use the blending function
to compute the influence of the three values on any interpolated value V(t)
as follows:

V (t) = B1
0(t)V0 + B1

1(t)V1 + B1
2(t)V2 (9.28)

It’s obvious from this arrangement that V0 will influence V (t) only when t
is between t0 and t2. Similarly, V1 and V2 will influence V (t) only when t is
between t1 and t3, and t2 and t4 respectively.

9 Curves and Patches 135

t0 t1 t2 t3 t4

V0 V1 V2

Fig. 9.13. Linearly interpolating between several values.

To understand the action of the blending function let’s concentrate on
one particular value B1

1(t). When t is less than t1 or greater than t3, the
function B1

1(t) must be zero. When t1 ≤ t ≤ t3, the function must return a
value reflecting the proportion of V1 that influences V (t). During the span
t1 ≤ t ≤ t2, V1 has to be blended in, and during the span t1 ≤ t ≤ t3, V1 has
to be blended out. The blending in is effected by the ratio(

t − t1
t2 − t1

)
(9.29)

and the blending out is effected by the ratio(
t3 − t

t3 − t2

)
(9.30)

Thus B1
1(t) has to incorporate both ratios, but it must ensure that they only

become active during the appropriate range of t. Let’s remind ourselves of this
requirement by subscripting the ratios accordingly:

B1
1(t) =

(
t − t1
t2 − t1

)
1,2

+
(

t3 − t

t3 − t2

)
2,3

(9.31)

We can now write the other two blending terms B1
0(t) and B1

2(t) as

B1
0(t) =

(
t − t0
t1 − t0

)
0,1

+
(

t2 − t

t2 − t1

)
1,2

(9.32)

B1
2(t) =

(
t − t2
t3 − t2

)
2,3

+
(

t4 − t

t4 − t3

)
3,4

(9.33)

You should be able to see a pattern linking the variables with their subscripts,
and the possibility of writing a general linear blending term B1

i (t) as

B1
i (t) =

(
t − ti

ti+1 − ti

)
i,i+1

+
(

ti+2 − t

ti+2 − ti+1

)
i+1,i+2

(9.34)

This enables us to write (9.28) in a general form as

V (t) =
2∑

i=0

B1
i (t)Vi (9.35)

136 Mathematics for Computer Graphics

But there is still a problem concerning the values associated with the knot
vector. Fortunately, there is an easy solution. One simple approach is to keep
the differences between t1, t2 and t3 whole numbers, e.g. 0, 1 and 2. But
what about the end conditions t0 and t4? To understand the resolution of this
problem, let’s examine the action of the three terms over the range of the
parameter t. The three terms are[(

t − t0
t1 − t0

)
0,1

+
(

t2 − t

t2 − t1

)
1,2

]
V0 (9.36)

[(
t − t1
t2 − t1

)
1,2

+
(

t3 − t

t3 − t2

)
2,3

]
V1 (9.37)

[(
t − t2
t3 − t2

)
2,3

+
(

t4 − t

t4 − t3

)
3,4

]
V2 (9.38)

and I propose that the knot vector be initialized with the following values:

t0 t1 t2 t3 t4
0 0 1 2 2

• Remember that the subscripts of the ratios are the subscripts of t, not the
values of t.

• Over the range t0 ≤ t ≤ t1, i.e. 0 to 0. Only the first ratio in (9.36) is
active and returns 0

0 . The algorithm must detect this condition and take
no action.

• Over the range t1 ≤ t ≤ t2, i.e. 0 to 1. The first ratio of (9.36) is active
again, and over the range of t blends out V0. The first ratio of (9.37) is
also active, and over the range of t blends in V1.

• Over the range t2 ≤ t ≤ t3, i.e. 1 to 2. The second ratio of (9.37) is active,
and over the range of t blends out V1. The first ratio of (9.38) is also active,
and over the range of t blends in V2.

• Finally, over the range t3 ≤ t ≤ t4, i.e. 2 to 2. The second ratio of (9.38) is
active and returns 0

0 . Once more, the algorithm must detect this condition
and take no action.

This process results in a linear interpolation between V0, V1 and V2. If (9.36),
(9.37) and (9.38) are applied to coordinate values, the result is two straight
lines. This seems like a lot of work just to draw two lines, but the beauty
of the technique is that it will work with any number of points, and can be
developed for quadratic and higher interpolations.

A. Aitken developed the following recursive interpolant:

pr
i (t) =

ti+r − t

ti+r − ti
pr−1

i (t) +
t − ti

ti+r − ti
pr−1

i+1 (t);{
r = 1, . . n;
i = 0, . . n − r; (9.39)

9 Curves and Patches 137

which interpolates between a series of points using repeated linear interpola-
tion.

9.6 B-Splines

B-splines, like Bézier curves, use polynomials to generate a curve segment.
But, unlike Bézier curves, B-splines employ a series of control points that
determine the curve’s local geometry. This feature ensures that only a small
portion of the curve is changed when a control point is moved.

There are two types of B-splines: rational and non-rational splines, which
divide into two further categories: uniform and non-uniform. Rational
B-splines are formed from the ratio of two polynomials such as

x(t) =
X(t)
W (t)

, y(t) =
Y (t)
W (t)

, z(t) =
Z(t)
W (t)

,

Although this appears to introduce an unnecessary complication, the division
by a second polynomial brings certain advantages:

• They describe perfect circles, ellipses, parabolas and hyperbolas, whereas
non-rational curves can only approximate these curves.

• They are invariant of their control points when subjected to rotation,
scaling, translation and perspective transformations, whereas non-rational
curves lose this geometric integrity.

• They allow weights to be used at the control points to push and pull the
curve.

An explanation of uniform and non-uniform types is best left until you
understand the idea of splines. So, without knowing the meaning of uniform,
let’s begin with uniform B-splines.

9.6.1 Uniform B-Splines

A B-spline is constructed from a string of curve segments whose geometry
is determined by a group of local control points. These curves are known
as piecewise polynomials. A curve segment does not have to pass through a
control point, although this may be desirable at the two end-points.

Cubic B-splines are very common, as they provide a geometry that is one
step away from simple quadratics, and possess continuity characteristics that
make the joins between the segments invisible. In order to understand their
construction, consider the scenario in Figure 9.14. Here we see a group of
(m + 1) control points P0, P1, P2, . . . ,Pm which determine the shape of a
cubic curve constructed from a series of curve segments S0, S1, S2, . . . ,Sm−3.

As the curve is cubic, curve segment Si is influenced by Pi,Pi+1, Pi+2, Pi+3,
and curve segment Si+1 is influenced by Pi+1, Pi+2, Pi+3, Pi+4. There are
(m + 1) control points, so there are (m − 2) curve segments.

138 Mathematics for Computer Graphics

Pi

Si

Pi+1

Si+1
Si+2

Pi+2

Pi+3

Si+3
Si+4

Pi+4

Pi+6

Pi+8

Si+6

Si+5

Pi+7

Fig. 9.14. The construction of a uniform non-rational B-spline curve.

A single segment Si(t) of a B-spline curve is defined by

Si(t) =
3∑

r=0

Pi+rBr(t) for 0 ≤ t ≤ 1 (9.40)

where

B0(t) =
−t3 + 3t2 − 3t + 1

6
=

(1 − t)3

6
(9.41)

B1(t) =
3t3 − 6t2 + 4

6
(9.42)

B2(t) =
−3t3 + 3t2 + 3t + 1

6
(9.43)

B3(t) =
t3

6
(9.44)

These are the B-spline basis functions and are shown in Figure 9.15.
Although it is not apparent, these four curve segments are part of one

curve. The basis function B3 starts at zero and rises to 0.1666 at t = 1. It is
taken over by B2 at t = 0, which rises to 0.666 at t = 1. The next segment
is B1, which takes over at t = 0 and falls to 0.1666 at t = 1. Finally, B0
takes over at 0.1666 and falls to zero at t = 1. Equations (9.28)–(9.31) are

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
(t

)

t

Fig. 9.15. The B-spline basis functions.

9 Curves and Patches 139

represented in matrix form by

Q1(t) = [t3 t2 t 1] · 1
6
·

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

Pi

Pi+1
Pi+2
Pi+3

⎤
⎥⎥⎦ (9.45)

Let’s now illustrate how (9.45) works. We first identify the control points
Pi, Pi+1, Pi+2, etc. Let these be (0, 1), (1, 3), (2, 0), (4, 1), (4, 3), (2, 2) and
(2, 3). They can be seen in Figure 9.16 connected together by straight lines.
If we take the first four control points: (0, 1), (1, 3), (2, 0), (4, 1), and subject
the x - and y-coordinates to the matrix in (9.45) over the range 0 ≤ t ≤ 1,
we obtain the first B-spline curve segment shown in Figure 9.16. If we move
along one control point and take the next group of control points (1, 3), (2, 0),
(4, 1), (4, 3), we obtain the second B-spline curve segment. This is repeated
a further two times.

Figure 9.16 shows the four curve segments using two gray scales, and it is
obvious that even though there are four discrete segments, they join together
perfectly. This is no accident. The slopes at the end-points of the basis curves
are designed to match the slopes of their neighbours and ultimately to keep
the geometric curve continuous.

9.6.2 Continuity

Constructing curves from several segments can only succeed if the slopes of
the abutting curves match. As we are dealing with curves whose slopes are
changing everywhere, it is necessary to ensure that even the rate of change of
slopes is matched at the join. This aspect of curve design is called geometric
continuity and is determined by the continuity properties of the basis function.
Let’s explore such features.

The first level of curve continuity, C0, ensures that the physical end of
one basis curve corresponds with the following, e.g. Si(1) = Si+1(0). We know
that this occurs by the graphs shown in Figure 9.15. The second level of curve
continuity, C1, ensures that the slope at the end of one basis curve matches

3.5

3

2.5

2

1.5

1

0.5

0
0 1 2 3

x
4 5

y

Fig. 9.16. Four curve segments forming a B-spline curve.

140 Mathematics for Computer Graphics

that of the following curve. This can be confirmed by differentiating the basis
functions (9.28)–(9.31):

B
′
0(t) =

−3t2 + 6t − 3
6

(9.46)

B
′
1(t) =

9t2 − 12t

6
(9.47)

B
′
2(t) =

−9t2 + 6t + 3
6

(9.48)

B
′
3(t) =

3t2

6
(9.49)

Evaluating (9.46)–(9.49) for t = 0 and t = 1, we discover the slopes 0.5, 0,
−0.5, 0 for the joins between B3, B2, B1, B0. The third level of curve continu-
ity, C2, ensures that the rate of change of slope at the end of one basis curve
matches that of the following curve. This can be confirmed by differentiating
(9.46)–(9.49):

B
′′
0(t) = −t + 1 (9.50)

B
′′
1(t) = 3t − 2 (9.51)

B
′′
2(t) = −3t + 1 (9.52)

B
′′
3(t) = t (9.53)

Evaluating (9.50)–(9.53) for t = 0 and t = 1, we discover the values 1,−2, 1, 0
for the joins between B3, B2, B1, B0. These combined continuity results are
tabulated in Table 9.4.

9.6.3 Non-Uniform B-Splines

Uniform B-splines are constructed from curve segments where the parameter
spacing is at equal intervals. Non-uniform B-splines, with the support of a
knot vector, provide extra shape control and the possibility of drawing periodic
shapes. Unfortunately an explanation of the underlying mathematics would
take us beyond the introductory nature of this text, and readers are advised
to seek out other books dealing in such matters.

Table 9.4. Continuity properties of cubic B-splines

t t t

C0 0 1 C1 0 1 C2 0 1

B3(t) 0 1/6 B′
3(t) 0 0.5 B′′

3(t) 0 1
B2(t) 1/6 2/3 B′

2(t) 0.5 0 B′′
2(t) 1 −2

B1(t) 2/3 1/6 B′
1(t) 0 −0.5 B′′

1(t) −2 1
B0(t) 1/6 0 B′

0(t) −0.5 0 B′′
0(t) 1 0

9 Curves and Patches 141

9.6.4 Non-Uniform Rational B-Splines

Non-uniform rational B-splines (NURBS) combine the advantages of non-
uniform B-splines and rational polynomials: they support periodic shapes such
as circles, and they accurately describe curves associated with the conic sec-
tions. They also play a very important role in describing geometry used in the
modelling of computer animation characters.

NURBS surfaces also have a patch formulation and play a very important
role in surface modelling in computer animation and CAD. However, tempting
though it is to give a description of NURBS surfaces here, they have been
omitted because their inclusion would unbalance the introductory nature of
this text.

9.7 Surface Patches

9.7.1 Planar Surface Patch

The simplest form of surface geometry consists of a patchwork of polygons
or triangles, where three or more vertices provide the basis for describing the
associated planar surface. For example, given four vertices P00, P10, P01, P11,
as shown in Figure 9.17, a point Puv can be defined as follows. To begin with,
a point along the edge P00 − P10 is defined as

Pu1 = (1 − u)P00 + uP10 (9.54)

and a point along the edge P01 − P11 is defined as

Pu2 = (1 − u)P01 + uP11 (9.55)

Therefore, any point Puv is defined as

Puv = (1 − v)Pu1 + vPu2

Puv = (1 − v)[(1 − u)P00 + uP10] + v[(1 − u)P01 + uP11]
Puv = (1 − u)(1 − v)P00 + u(1 − v)P10 + v(1 − u)P01 + uvP11 (9.56)

P11

Puv

P01

P00 P10u

v

Fig. 9.17. A flat patch defined by u and v parameters.

142 Mathematics for Computer Graphics

This, however, can be written in matrix form as

Puv = [(1 − u) u] ·
[
P00 P01
P10 P11

]
·
[
(1 − v)

v

]
(9.57)

which expands to

Puv = [u 1] ·
[−1 1

1 0

]
·
[

P00 P01
P10 P11

]
·
[−1 1

1 0

]
·
[

v
1

]
(9.58)

Let’s illustrate this with an example. Given the following four points: P00 =
(0, 0, 0), P10 = (0, 0, 4) P01 = (2, 2, 1), P11 = (2, 2, 3), we can write the coordi-
nates of any point on the patch as

xuv = [u 1] ·
[−1 1

1 0

]
·
[

0 2
0 2

]
·
[−1 1

1 0

]
·
[

v
1

]

yuv = [u 1] ·
[−1 1

1 0

]
·
[

0 2
0 2

]
·
[−1 1

1 0

]
·
[

v
1

]

zuv = [u 1] ·
[−1 1

1 0

]
·
[

0 1
4 3

]
·
[−1 1

1 0

]
·
[

v
1

]
xuv = 2v
yuv = 2v
zuv = u(4 − 2v) + v

By substituting values of u and v in (9.47) between the range 0 ≤ u, v ≤ 1
we obtain the coordinates of any point on the surface of the patch.

If we now introduce the ideas of Bézier control points into a surface patch
definition, we provide a very powerful way of creating smooth 3D surface
patches.

9.7.2 Quadratic Bézier Surface Patch

Bézier proposed a matrix of nine control points to determine the geometry of
a quadratic patch, as shown in Figure 9.18. Any point on the patch is defined
by

Puv = [u2 u 1]·
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦·

⎡
⎣ P00 P01 P02

P10 P11 P12
P20 P21 P22

⎤
⎦·

⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦·

⎡
⎣ v2

v
1

⎤
⎦

The individual x, y and z -coordinates are obtained by substituting the x, y
and z values for the central P matrix.

Let’s illustrate the process with an example. Given the following points:

P00 = (0, 0, 0) P01 = (1, 1, 0) P02 = (2, 0, 0)
P10 = (0, 1, 1) P11 = (1, 2, 1) P12 = (2, 1, 1)
P20 = (0, 0, 2) P21 = (1, 1, 2) P22 = (2, 0, 2)

9 Curves and Patches 143

P00

P10

P01
P11

P12

P21

P02

P22

P2

Fig. 9.18. A quadratic Bézier surface patch.

we can write

xuv = [u2 u 1] ·
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦ ·

⎡
⎣ 0 1 2

0 1 2
0 1 2

⎤
⎦ ·

⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦ ·

⎡
⎣ v2

v
1

⎤
⎦

xuv = [u2 u 1] ·
⎡
⎣ 0 0 0

0 0 0
0 2 0

⎤
⎦ ·

⎡
⎣ v2

v
1

⎤
⎦

xuv = 2v

yuv = [u2 u 1] ·
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦ ·

⎡
⎣ 0 1 0

1 2 1
0 1 0

⎤
⎦ ·

⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦ ·

⎡
⎣ v2

v
1

⎤
⎦

yuv = [u2 u 1] ·
⎡
⎣ 0 0 −2

0 0 2
−2 2 0

⎤
⎦ ·

⎡
⎣ v2

v
1

⎤
⎦

yuv = 2(u + v − u2 − v2)

zuv = [u2 u 1] ·
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦ ·

⎡
⎣ 0 0 0

1 1 1
2 2 2

⎤
⎦ ·

⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦ ·

⎡
⎣ v2

v
1

⎤
⎦

zuv = [u2 u 1] ·
⎡
⎣ 0 0 0

0 0 2
0 0 0

⎤
⎦ ·

⎡
⎣ v2

v
1

⎤
⎦

zuv = 2u

Therefore, any point on the surface patch has coordinates

xuv = 2v, yuv = 2(u + v − u2 − v2), zuv = 2u

144 Mathematics for Computer Graphics

Table 9.5. The x, y, z coordinates for different
values of u and v

V

0
1
2

1

0 (0, 0, 0)
(
1,

1
2
, 0

)
(2, 0, 0)

u
1
2

(
0,

1
2
, 1

) (
1,

1
2
, 1

) (
2,

1
2
, 1

)
1 (0, 0, 2)

(
1,

1
2
, 2

)
(2, 0, 2)

Table 9.5 shows the coordinate values for different values of u and v. In this
example, the y-coordinates provide the surface curvature, which could be
enhanced by modifying the y-coordinates of the control points.

9.7.3 Cubic Bézier Surface Patch

As we saw earlier in this chapter, cubic Bézier curves require two end-points,
and two central control points. In the surface patch formulation a 4×4 matrix
is required as follows:

Puv = [u3 u2 u 1] ·

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

P00 P01 P02 P03
P10 P11 P12 P13
P20 P21 P22 P23
P30 P31 P32 P33

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

which can be illustrated by an example.
Given the points:

P00 = (0, 0, 0) P01 = (1, 1, 0) P02 = (2, 1, 0) P03 = (3, 0, 0)
P10 = (0, 1, 1) P11 = (1, 2, 1) P12 = (2, 2, 1) P13 = (3, 1, 1)
P20 = (0, 1, 2) P21 = (1, 2, 2) P22 = (2, 2, 2) P23 = (3, 1, 2)
P30 = (0, 0, 3) P31 = (1, 1, 3) P32 = (2, 1, 3) P33 = (3, 0, 3)

9 Curves and Patches 145

we can write the following matrix equations:

xuv = −[u3 u2 u 1] ·

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

xuv = [u3 u2 u 1] ·

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 3 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

xuv = 3u

yuv = [u3 u2 u 1] ·

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0 1 1 0
1 2 2 1
1 2 2 1
0 1 1 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

yuv = [u3 u2 u 1] ·

⎡
⎢⎢⎣

0 0 0 0
0 0 0 −3
0 0 0 3
0 −3 3 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

yuv = 3(u + v − u2 − v2)

zuv = [u3 u2 u 1] ·

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

zuv = [u3 u2 u 1] ·

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

zuv = 3u

146 Mathematics for Computer Graphics

Table 9.6. The x, y, z coordinates for different
values of u and v

v
0 1

2 1

0 (0, 0, 0)
(

1
1
2
,

3
4
, 0

)
(3, 0, 0)

u
1
2

(
0,

3
4
, 1

1
2

) (
1
1
2
, 1

1
2
, 1

1
2

) (
3,

3
4
, 1

1
2

)

1 (0, 0, 3)
(

1
1
2
,

3
4
, 3

)
(3, 0, 3)

Therefore, any point on the surface patch has coordinates

xuv = 3v, yuv = 3(u + v − u2 − v2), zuv = 3u

Table 9.6 shows the coordinate values for different values of u and v. In this
example, the y-coordinates provide the surface curvature, which could be
enhanced by modifying the y-coordinates of the control points.

Complex 3D surfaces are readily modelled using Bézier patches. One sim-
ply creates a mesh of patches such that their control points are shared at the
joins. Surface continuity is controlled using the same mechanism for curves.
But where the slopes of trailing and starting control edges apply for curves,
the corresponding slopes of control tiles apply for patches.

9.8 Summary

This chapter has been the most challenging one to write. On the one hand,
the subject is vital to every aspect of computer graphics, but on the other,
the reader is required to wrestle with cubic polynomials and a little calculus.
However, I do hope that I have managed to communicate some essential con-
cepts behind curves and surfaces, and that you will be tempted to implement
some of the mathematics.

10
Analytic Geometry

This chapter explores some basic elements of geometry and analytic geome-
try that are frequently encountered in computer graphics. For completeness,
I have included a short review of important elements of Euclidean geome-
try with which you should be familiar. Perhaps the most important topics
that you should try to understand concern the definitions of straight lines in
space, 3D planes, and how points of intersection are computed. Another useful
topic is the role of parameters in describing lines and line segments, and their
intersection.

10.1 Review of Geometry

In the 3rd century bce Euclid laid the foundations of geometry that have been
taught in schools for centuries. In the 19th century, mathematicians such as
Bernhard Riemann (1809–1900) and Nicolai Lobachevsky (1793–1856) trans-
formed this traditional Euclidean geometry with ideas such as curved space
and spaces with higher dimensions. Although none of these developments
affect computer graphics, they do place Euclid’s theorems in a specific con-
text: a set of axioms that apply to flat surfaces. We have probably all been
taught that parallel lines don’t meet, and that the internal angles of a triangle
sum to 180◦, but these things are only true in specific situations. As soon as
the surface or space becomes curved, such rules break down. So let’s review
some rules and observations that apply to shapes drawn on a flat surface.

148 Mathematics for Computer Graphics

b

b

b
a

a

a

Fig. 10.1. Examples of adjacent/supplementary, opposite and complementary angles.

a

a

b

c

b

c

d

d

Fig. 10.2. 1st intercept theorem.

10.1.1 Angles

By definition, 360◦ or 2π [radians] measure one revolution. The reader should
be familiar with both units of measurement, and how to convert from one to
the other (see page 26). Figure 10.1 shows examples of adjacent/supplementary
angles (sum to 180◦) opposite angles (equal), and complementary angles (sum
to 90◦).

10.1.2 Intercept Theorems

Figures 10.2 and 10.3 show scenarios involving intersecting lines and parallel
lines that give rise to the following observations:

• First intercept theorem:

a + b

a
=

c + d

c
,

b

a
=

d

c
(10.1)

• Second intercept theorem:

a

b
=

c

d
(10.2)

10 Analytic Geometry 149

d

a

a

b
b

c

c

d

Fig. 10.3. 2nd intercept theorem.

2.5

1.545

Fig. 10.4. A rectangle with a height to width ratio equal to the Golden Section.

10.1.3 Golden Section

The golden section is widely used in art and architecture to represent an ‘ideal’
ratio for the height and width of an object. Its origins stem from the interac-
tion between a circle and triangle and give rise to the following relationship:

b =
a

2

(√
5 − 1

)
≈ 0.618a (10.3)

The rectangle in Figure 10.4 has the proportions

height = 0.618 × width.

However, it is interesting to note that the most widely observed rectangle -the
television screen-bears no relation to this ratio.

10.1.4 Triangles

The rules associated with interior and exterior angles of a triangle are very
useful in solving all sorts of geometric problems. Figure 10.5 shows two dia-
grams identifying interior and exterior angles. We can see that the sum of the

150 Mathematics for Computer Graphics

a

a a�

q�

q

a

a

b�b

bb

b

q

Fig. 10.5. Relationship between interior and exterior angles.

interior angles is 180◦, and that the exterior angles of a triangle are equal to
the sum of the opposite angles:

α + β + θ = 180◦ (10.4)

α′ = θ + β (10.5)

β′ = α + θ (10.6)

θ′ = α + β (10.7)

10.1.5 Centre of Gravity of a Triangle

A median is a straight line joining a vertex of a triangle to the mid-point
of the opposite side. When all three medians are drawn, they intersect at a
common point, which is also the triangle’s centre of gravity. The centre of
gravity divides all the medians in the ratio 2 : 1. Figure 10.6 illustrates this
arrangement.

10.1.6 Isosceles Triangle

Figure 10.7 shows an isosceles triangle, which has two equal sides of length l
and equal base angles α. The triangle’s altitude and area are

h =

√
l2 −

(c

2

)2
A =

1
2
ch (10.8)

10 Analytic Geometry 151

c

c

a

a
b

b

Fig. 10.6. The three medians of a triangle intersect as its centre of gravity.

l l

h

a a

c
2

c
2

Fig. 10.7. An isosceles triangle has two equal sides l and equal base angles α.

10.1.7 Equilateral Triangle

An equilateral triangle has three equal sides of length l and equal angles of
60◦. The triangle’s altitude and area are

h =
√

3
2

l A =
√

3
4

l2 (10.9)

10.1.8 Right Triangle

Figure 10.8 shows a right triangle with its obligatory right angle. The triangle’s
altitude and area are

h =
ab

c
A =

1
2
ab (10.10)

152 Mathematics for Computer Graphics

b
h

a

c

Fig. 10.8. A Right angled triangle.

Fig. 10.9. The Theorem of Thales states that the right angle of a right triangle lies
on the circumcircle over the hypotenuse.

10.1.9 Theorem of Thales

Figure 10.9 illustrates the theorem of Thales, which states that the right angle
of a right triangle lies on the circumcircle over the hypotenuse.

10.1.10 Theorem of Pythagoras

Despite its name, there is substantial evidence to show that this theorem was
known by the Babylonians a millennium before Pythagoras. However, he is
credited with its proof. Figure 10.10 illustrates the well-known relationship

c2 = a2 + b2 (10.11)

from which one can show that

sin2(α) + cos2(α) = 1 (10.12)

10.1.11 Quadrilaterals

Quadrilaterals have four sides. Examples include the square, rectangle, trape-
zoid, parallelogram and rhombus, whose interior angles sum to 360◦. As the
square and rectangle are such familiar shapes, we will only consider the other
three.

10 Analytic Geometry 153

c
a

a

b

b

c

Fig. 10.10. The Theorem of Pythagoras states that c2 = a2 + b2.

10.1.12 Trapezoid

Figure 10.11 shows a trapezoid which has one pair of parallel sides h apart.
The mid-line m and area are given by

m =
1
2
(a + b) A = mh (10.13)

10.1.13 Parallelogram

Figure 10.12 shows a parallelogram. This is formed from two pairs of inter-
secting parallel lines, so it has equal opposite sides and equal opposite angles.
The altitude and diagonal lengths are given by

h = b · sin α (10.14)

d1,2 =
√

a2 + b2 ± 2a
√

b2 − h2 (10.15)

and the area by
A = ah (10.16)

10.1.14 Rhombus

Figure 10.13 shows a rhombus, which is a parallelogram with four sides of
equal length a. The area is given by

A = a2 sin(α) =
d1d2

2
(10.17)

154 Mathematics for Computer Graphics

b

m

a

h

Fig. 10.11. A trapezoid with one pair of parallel sides.

hbb

a

aa

Fig. 10.12. A parallelogram formed by two pairs of parallel lines.

a

a a

aa

d2

d1

Fig. 10.13. A rhombus is a parallelogram with four equal sides.

10.1.15 Regular Polygon (n-gon)

Figure 10.14 shows part of a regular n-gon with outer radius Ro, inner radius
Ri and edge length an. Table 10.1 shows the relationship between the area,
an, Ri and Ro for different polygons.

10.1.16 Circle

The circumference and area of a circle are given by

C = π d = 2πr (10.18)

10 Analytic Geometry 155

Table 10.1. The area An, edge length an, internal radius Ri and external radius Ro

for different polygons

n an = 2Ri tan(180◦/n) Ri = Ro cos(180◦/n) R2
o = R2

i +
1
4
a2

n

n An =
n

4
a2

n cot(180◦/n) An =
n

2
R2

0 sin(360◦/n) An = nR2
i tan(180◦/n)

5 a5 = 2Ri

√
5 − 2

√
5 Ri =

Ro

4

(√
5 + 1

)
Ro = Ri

(√
5 − 1

)
5 A5 =

a2
5

4

√
25 + 10

√
5 A5 =

5
8
R2

o

√
10 + 2

√
5 A5 = 5R2

i

√
5 − 2

√
5

6 a6 =
2
3
Ri

√
3 Ri =

Ro

2

√
3 Ro =

2
3
Ri

√
3

6 A6 =
3
2
a2

6

√
3 A6 =

3
2
R2

o

√
3 A6 = 2R2

i

√
3

8 a8 = 2Ri

(√
2 − 1

)
Ri =

Ro

2

√
2 +

√
2 Ro = Ri

√
4 − 2

√
2

8 A8 = 2a2
8

(√
2 + 1

)
A8 = 2R2

o

√
2 A8 = 8R2

i

(√
2 − 1

)
10 a10 =

2
5
Ri

√
25 − 10

√
5 Ri =

Rc

4

√
10 + 2

√
5 Ro =

Ri

5

√
50 − 10

√
5

10 A10 =
5
2
a2

10

√
5 + 2

√
5 A10 =

5
4
R2

o

√
10 − 2

√
5 A10 = 2R2

i

√
25 − 10

√
5

RoRi

an

Fig. 10.14. Part of a regular gon showing the internal and outer radii and the edge
length.

A = π r2 = π
d2

4
(10.19)

where d = 2r.
An annulus is the area between two concentric circles, as shown in Figure

10.15, and its area is given by

A = π(R2 − r2) =
π

4
(D2 − d2) (10.20)

where D = 2R and d = 2r.

156 Mathematics for Computer Graphics

R r

Fig. 10.15. An annulus formed from two concentric circles.

r

a

Fig. 10.16. A sector of a circle defined by the angle α.

Figure 10.16 shows a sector of a circle, whose area is given by

A =
α

360◦
π r2 (10.21)

Figure 10.17 shows a segment of a circle, whose area is given by

A =
r2

2
(α − sin(α)) (α is in radians) (10.22)

The area of an ellipse with major and minor radii a and b is given by

A = πab (10.23)

10.2 2D Analytical Geometry

In this section we briefly examine familiar descriptions of geometric elements
and ways of computing intersections.

10.2.1 Equation of a Straight Line

The well-known equation of a line is

y = mx + c (10.24)

10 Analytic Geometry 157

a

Fig. 10.17. A segment of a circle defined by the angle α.

c
X

m

Y

Fig. 10.18. The normal form of the straight line is y = mx + c.

where m is the slope and c the intersection with the y-axis, as shown in
Figure 10.18. This is called the normal form.

Given two points (x1, y1) and (x2, y2) we can state

y − y1

x − x1
=

y2 − y1

x2 − x1
(10.25)

which yields

y = (x − x1)
y2 − y1

x2 − x1
+ y1 (10.26)

Although these equations have their uses, the more general form is much more
convenient:

ax + by + c = 0 (10.27)

As we shall see, this equation possesses some interesting qualities.

158 Mathematics for Computer Graphics

10.2.2 The Hessian Normal Form

Figure 10.19 shows a line whose orientation is controlled by a normal unit
vector n = [a b]T. If P(x, y) is any point on the line, then p is a position
vector where p = [x y]T and d is the perpendicular distance from the origin
to the line.

Therefore
d

‖p‖ = cos(α)

and
d = ‖p‖ cos(α) (10.28)

But the dot product n · p is given by

n · p = ‖n‖ ‖p‖ cos(α) = ax + by (10.29)

which implies that
ax + by = d‖n‖ (10.30)

and because ‖n‖ = 1 we can write

ax + by − d = 0 (10.31)

where (x, y) is a point on the line, a and b are the components of a unit vector
normal to the line and d is the perpendicular distance from the origin to the
line. The distance d is positive when the normal vector points away from the
origin, otherwise it is negative.

Let’s consider two examples.

• Example 1. Find the equation of a line whose normal vector is [3 4]T and
the perpendicular distance from the origin to the line is 1.

To begin, we normalize the normal vector to its unit form.

d

a
P(x, y)

n

Y

XP

Fig. 10.19. The orientation of a line can be controlled by a normal vector n and
distance d.

10 Analytic Geometry 159

Therefore if n = [3 4]T, ‖n‖ =
√

32 + 42 = 5

The equation of the line is

3
5
x +

4
5
y − 1 = 0

• Example 2. Given y = 2x + 1, what is the Hessian normal form?

Rearranging the equation, we get

2x − y + 1 = 0

If we want the normal vector to point away from the origin we multiply by −1:

−2x + y − 1 = 0

Normalize the normal vector to a unit form, i.e.

i.e.
√

(−2)2 + 12 =
√

5

− 2√
5
x +

1√
5
y − 1√

5
= 0

Therefore, the perpendicular distance from the origin to the line and the unit
normal vector are respectively

1√
5

and
[−2√

5
1√
5

]T

The two signs from the square root provide the alternate directions of the
vector, and the sign of d.

As the Hessian normal form involves a unit normal vector, we can incor-
porate the vector’s direction cosines within the equation:

x cos(α) + y sin(α) − d = 0 (10.32)

where α is the angle between the perpendicular and the x -axis.

10.2.3 Space Partitioning

The Hessian normal form provides a very useful way of partitioning space
into two zones: points above the line in the partition that includes the normal
vector, and points in the opposite partition. This is illustrated in Figure 10.20.
Given the equation

ax + by − d = 0 (10.33)

a point (x, y) on the line satisfies the equation. But if we substitute another
point (x1, y1) which is in the partition in the direction of the normal vector,
it creates the inequality

ax1 + by1 − d > 0 (10.34)

160 Mathematics for Computer Graphics

Y

X
ax + by - d < 0

ax + by - d = 0

ax + by - d > 0

Fig. 10.20. The Hessian normal form of the line equation partitions space into two
zones.

Conversely, a point (x2, y2) which is in the partition opposite to the direction
of the normal vector creates the inequality

ax2 + by2 − d < 0 (10.35)

This space-partitioning feature of the Hessian normal form is useful in clipping
lines against polygonal windows.

10.2.4 The Hessian Normal Form from Two Points

Given two points (x1, y1) and (x2, y2), we can compute the values of a, b and
d for the Hessian normal form as follows. To begin with, we observe:

y − y1

x − x1
=

y2 − y1

x2 − x1
=

∆y

∆x
(10.36)

therefore
(y − y1)∆x = (x − x1)∆y (10.37)

and
x∆y − y∆x − x1∆y + y1∆x = 0 (10.38)

which is the general equation of a straight line. For the Hessian normal form,√
∆x2 + ∆y2 = 1

Therefore, the Hessian normal form is given by

x∆y − y∆x − (x1∆y − y1∆x)√
∆x2 + ∆y2

= 0 (10.39)

Let’s test this with an example. Given the following points: (x1, y1) = (0, 1)
and (x2, y2) = (1, 0); ∆x = 1, ∆y = −1.

10 Analytic Geometry 161

Therefore, using (10.38),

x(−1) − y(1) − (0 ×−1 − 1 × 1) = 0
−x − y + 1 = 0 (10.40)

which is the general equation for the line. We now convert it to the Hessian
normal form:

−x − y + 1√
12 + (−1)2

=
−x − y + 1√

2
= 0

− x√
2
− y√

2
+

1√
2

= 0 (10.41)

The choice of sign in the denominator anticipates the two directions for the
normal vector, and the sign of d.

10.3 Intersection Points

10.3.1 Intersection Point of Two Straight Lines

Given two line equations of the form

a1x + b1y + c1 = 0
a2x + b2y + c2 = 0 (10.42)

the intersection point (xi, yi) is given by

xi =
b1c2 − b2c1

a1b2 − a2b1
and yi =

c1a2 − c2a1

a1b2 − a2b1
(10.43)

If the denominator is zero, the equations are linearly dependent, indicating
that there is no intersection.

10.3.2 Intersection Point of Two Line Segments

We are often concerned with line segments in computer graphics as they rep-
resent the edges of shapes and objects. So let’s investigate how to compute
the intersection of two 2D-line segments.

Figure 10.21 shows two line segments defined by their end-points (P1−P2)
and (P3 − P4). If we locate position vectors at these points, we can write the
following vector equations to identify the point of intersection:

Pi = P1 + t(P2 − P1)
Pi = P3 + s(P4 − P3) (10.44)

where parameters s and t vary between 0 and 1. For the point of intersection,
we can write

P1 + t(P2 − P1) = P3 + s(P4 − P3) (10.45)

162 Mathematics for Computer Graphics

Y

X

P1

P4

P2P3 Pi

Fig. 10.21. Two line segments with their associated position vectors.

Therefore, the parameters s and t are given by

s =
(P1 − P3) + t(P2 − P1)

(P4 − P3)

t =
(P3 − P1) + s(P4 − P3)

(P2 − P1)
(10.46)

From (10.46) we can write

t =
(x3 − x1) + s(x4 − x3)

(x2 − x1)

t =
(y3 − y1) + s(y4 − y3)

(y2 − y1)
(10.47)

which yields

t =
x1(y4 − y3) + x3(y1 − y4) + x4(y3 − y1)
(y2 − y1)(x4 − x3) − (x2 − x1)(y4 − y3)

and similarly,

s =
x1(y3 − y2) + x2(y3 − y1) + x3(y2 − y1)
(y4 − y3)(x2 − x1) − (x4 − x3)(y2 − y1)

(10.48)

Let’s test (10.48) with two examples to illustrate how this equation can be
used in practice. The first example will demonstrate an intersection condition,
and the second demonstrates a touching condition.

• Example 1. Figure 10.22a shows two line segments intersecting, with an
obvious intersection point of (1.5, 0.0). The coordinates of the line segments
are

(x1, y1) = (1, 0) (x2, y2) = (2, 0)
(x3, y3) = (1.5,−1.0) (x4, y4) = (1.5, 1.0)

10 Analytic Geometry 163

1

1

−1

2

Y

X

(a)

1

1

−1

2

Y

X

(b)

Fig. 10.22. (a) Shows two line segments intersecting, and (b) shows two line segments
touching.

therefore

t =
1(1 − (−1)) + 1.5(0 − 1) + 1.5(−1 − 0)
(0 − 0)(1.5 − 1.5) − (2 − 1)(1 − (−1))

t =
2 − 1.5 − 1.5

−2
= 0.5

and

s =
1(−1 − 0) + 2(0 − (−1)) + 1.5(0 − 0)
(1 − (−1))(2 − 1) − (1.5 − 1.5)(0 − 0)

= 0.5

Substituting t and s in (10.44) we get (xi, yi) = (1.5, 0.0), as predicted.
• Example 2. Figure 10.22b shows two line segments touching at (1.5, 0.0).

The coordinates of the line segments are

(x1, y1) = (1, 0) (x2, y2) = (2, 0)
(x3, y3) = (1.5, 0.0) (x4, y4) = (1.5, 1.0)

therefore

t =
1(1.0 − 0.0) + 1.5(0.0 − 1.0) + 1.5(0.0 − 0.0)
(0.0 − 0.0)(1.5 − 1.5) − (2.0 − 1.0)(1.0 − 0.0)

t =
1.0 − 1.5
−1.0

= 0.5

s =
1(0 − 0) + 2(0 − 0) + 1.5(0 − 0)

(1 − 0)(2 − 1) − (1.5 − 1.5)(0 − 0)

s =
0
1

= 0

The zero value of s confirms that the lines touch, rather than intersect, and
t = 0.5 confirms that the touching takes place halfway along the line segment.

164 Mathematics for Computer Graphics

10.4 Point Inside a Triangle

We often require to test whether a point is inside, outside or touching a
triangle. Let’s examine two ways of performing this operation. The first is
related to finding the area of a triangle.

10.4.1 Area of a Triangle

Let’s declare a triangle formed by the anti-clockwise points (x1, y1), (x2, y2)
and (x3, y3), as shown in Figure 10.23. The area of the triangle is given by:

A = (x2−x1)(y3−y1)−1
2
(x2−x1)(y2−y1)−1

2
(x2−x3)(y3−y2)−1

2
(x3−x1)(y3−y1)

which simplifies to

A =
1
2
[x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)]

and this can be further simplified to

A =
1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ (10.49)

Figure 10.24 shows two triangles with opposing vertex sequences. If we calcu-
late the area of the top triangle with anti-clockwise vertices, we obtain

A =
1
2
[1(2 − 4) + 3(4 − 2) + 2(2 − 2)] = 2

Y

X

P3

P2

P1

Fig. 10.23. The area of the triangle is computed by subtracting the smaller triangles
from the rectangular area.

10 Analytic Geometry 165

Y

X

P3

P1 P2

P3

Fig. 10.24. The top triangle has anti-clockwise vertices, and the bottom triangle
clockwise vertices.

whereas the area of the bottom triangle with clockwise vertices is

A =
1
2
[1(2 − 0) + 3(0 − 2) + 2(2 − 2)] = −2

So the technique is sensitive to vertex direction. We can exploit this sensitivity
to test if a point is inside or outside a triangle.

Consider the scenario shown in Figure 10.25, where the point Pt is inside
the triangle (P1, P2, P3).

• If the area of triangle (P1, P2, Pt) is positive, Pt must be to the left of the
line (P1, P2).

• If the area of triangle (P2, P3, Pt) is positive, Pt must be to the left of the
line (P2, P3).

• If the area of triangle (P3, P1, Pt) is positive, Pt must be to the left of the
line (P3, P1).

If all the above tests are positive, Pt is inside the triangle. Furthermore, if one
area is zero and the other areas are positive, the point is on the boundary,
and if two areas are zero and the other positive, the point is on a vertex.

Let’s now investigate how the Hessian normal form provides a similar
function.

10.4.2 Hessian Normal Form

We can determine whether a point is inside, touching or outside a triangle
by representing the triangle’s edges in the Hessian normal form, and testing
which partition the point is located in. If we arrange that the normal vectors
are pointing towards the inside of the triangle, any point inside the triangle

166 Mathematics for Computer Graphics

Y

P

P3

P2

Pt

X

Fig. 10.25. If the point Pt is inside the triangle, it is always to the left as the boundary
is traversed in an anti-clockwise sequence.

will create a positive result when tested against the edge equation. In the
following calculations there is no need to ensure that the normal vector is a
unit vector.

To illustrate this in action, consider the scenario shown in Figure 10.26
where we see a triangle formed by the points (1, 1), (3, 1) and (2, 3). With
reference to (10.38) we compute the three line equations:

1. The line between (1, 1) and (3, 1):

0(x − 1) + 2(1 − y) = 0
−2y + 2 = 0 (10.50)

Y

(2, 3)

(3, 1)(1, 1)

X

Fig. 10.26. The triangle is formed from three line equations expressed in the Hessian
normal form. Any point inside the triangle can be found by evaluating the equations.

10 Analytic Geometry 167

Multiply (10.50) by −1 to reverse the normal vector:

2y − 2 = 0 (10.51)

2. The line between (3, 1) and (2, 3):

2(x − 3) + (−1)(1 − y) = 0
2x − 6 − 1 + y = 0

2x + y − 7 = 0 (10.52)

Multiply (10.52) by −1 to reverse the normal vector:

−2x − y + 7 = 0 (10.53)

3. The line between (2, 3) and (1, 1):

(−2)(x − 2) + (−1)(3 − y) = 0
−2x + 4 − 3 + y = 0

−2x + y + 1 = 0 (10.54)

Multiply (10.54) by −1 to reverse the normal vector:

2x − y − 1 = 0

Thus the three line equations for the triangle are

2y − 2 = 0
−2x − y + 7 = 0

2x − y − 1 = 0 (10.55)

We are only interested in the sign of the left-hand expressions:

2y − 2
−2x − y + 7

2x − y − 1 (10.56)

which can be tested for any arbitrary point (x, y). If they are all positive, the
point is inside the triangle. If one expression is negative, the point is outside.
If one expression is zero, the point is on an edge, and if two expressions are
zero, the point is on a vertex.

Just as a quick test, consider the point (2, 2). The three expressions (10.56)
are positive, which confirms that the point is inside the triangle. The point
(3, 3) is obviously outside the triangle, which is confirmed by two positive
results and one negative. Finally, the point (2, 3), which is a vertex, gives one
positive result and two zero results.

168 Mathematics for Computer Graphics

10.5 Intersection of a Circle with a Straight Line

The equation of a circle has already been given in the previous chapter, so we
will now consider how to compute its intersection with a straight line.

We begin by testing the equation of a circle with the normal form of the
line equation:

x2 + y2 = r2 and y = mx + c

By substituting the line equation in the circle’s equation we discover the two
intersection points:

x1,2 =
−mc ± √

r2(1 + m2) − c2

1 + m2

y1,2 =
c ± m

√
r2(1 + m2) − c2

1 + m2 (10.57)

Let’s test this result with the scenario shown in Figure 10.27. Using the normal
form of the line equation, we have

y = x + 1 where m = 1 and c = 1

Substituting these values in (10.57) yields

x1,2 = −1, 0 and y1,2 = 0, 1

The actual points of intersection are (−1, 0) and (0,1).

X

Y

1

1−1

y = x + 1
x − y + 1 = 0
−0.707x + 0.707y − 0.707 = 0

x 2 + y 2 = r 2

Fig. 10.27. The intersection of a circle with a line defined in its normal form, general
form, and the Hessian normal form.

10 Analytic Geometry 169

Testing the equation of the circle with the general equation of the line
ax + by + c = 0 yields intersections given by

x1,2 =
−ac ± b

√
r2(a2 + b2) − c2

a2 + b2

y1,2 =
−bc ± a

√
r2(a2 + b2) − c2

a2 + b2 (10.58)

From Fig. 10.27, the general form of the line equation is

x − y + 1 = 0 where a = 1, b = −1 and c = 1

Substituting these values in (10.58) yields

x1,2 = −1, 0 and y1,2 = 0, 1

which gives the same intersection points found above.
Finally, using the Hessian normal form of the line ax + by − d = 0 yields

intersections given by

x1,2 = ad ± b
√

r2 − d2

y1,2 = bd ± a
√

r2 − d2 (10.59)

From Fig. 10.27, the Hessian normal form of the line equation is

−0.707x + 0.707y − 0.707 = 0

where a = −0.707, b = 0.707 and d = 0.707. Substituting these values in
(10.59) yields

x1,2 = −1, 0 and y1,2 = 0, 1

which gives the same intersection points found above. One can readily see the
computational benefits of using the Hessian normal form over the other forms
of equations.

10.6 3D Geometry

3D straight lines are best described using vector notation, and it is a good
idea to develop strong skills in vector techniques if you wish to solve problems
in 3D geometry.

Let’s begin this short survey of 3D analytic geometry by describing the
equation of a straight line.

170 Mathematics for Computer Graphics

10.6.1 Equation of a Straight Line

We start by using a vector b to define the orientation of the line, and a
point a in space through which the vector passes. This scenario is shown in
Figure 10.28. Given another point P on the line we can define a vector tb
between a and P, where t is some scalar. The position vector p is given by

p = a + tb (10.60)

from which we can obtain the coordinates of the point p:

xp = xa + txb

yp = ya + tyb

zp = za + tzb (10.61)

For example, if b = [1 2 3]T and a = (2, 3, 4), then by setting t = 1 we can
identify a second point on the line:

xp = 2 + 1 = 3
yp = 3 + 2 = 5
zp = 4 + 3 = 7

In fact, by using different values of t we can slide up and down the line with
ease.

If we already have two points in space P1 and P2, such as the vertices of
an edge, we can represent the line equation using the above vector technique:

p = p1 + t(p2 − p1)

Y

P

X

Z

b
p = a + t ba

a

tb

Fig. 10.28. The line equation is based upon the point a and the vector b.

10 Analytic Geometry 171

where p1 and p2 are position vectors to their respective points. Once more,
we can write the coordinates of any point P as follows:

xp = x1 + t(x2 − x1)
yp = y1 + t(y2 − y1)
zp = z1 + t(z2 − z1) (10.62)

10.6.2 Point of Intersection of Two Straight Lines

Given two straight lines we can test for a point of intersection, but must be
prepared for three results:

• a real intersection point
• no intersection point
• an infinite number of intersections (identical lines).

If the line equations are of the form

p = a1 + rb1

p = a2 + sb2 (10.63)

for an intersection we can write

a1 + rb1 = a2 + sb2 (10.64)

which yields

xa1 + rxb1 = xa2 + sxb2

ya1 + ryb1 = ya2 + syb2

za1 + rzb1 = za2 + szb2 (10.65)

We now have three equations in two unknowns, and any value of r and s must
hold for all three equations. We begin by selecting two equations that are
linearly independent (i.e. one equation is not a scalar multiple of the other)
and solve for r and s, which must then satisfy the third equation. If this
final substitution fails, then there is no intersection. If all three equations are
linearly dependent, they describe two parallel lines, which can never intersect.

To check for linear dependency we rearrange (10.65) as follows:

rxb1 − sxb2 = xa2 − xa1

ryb1 − syb2 = ya2 − ya1

rzb1 − szb2 = za2 − za1 (10.66)

If the determinant ∆ of any pair of these equations is zero, then they are de-
pendent. For example, the first two equations of (10.66) form the determinant

172 Mathematics for Computer Graphics

∆ =
∣∣∣∣ xb1 −xb2

yb1 −yb2

∣∣∣∣ (10.67)

which, if zero, implies that the two equations can not yield a solution. As it is
impossible to predict which pair of equations from (10.66) will be independent,
let’s express two independent equations as follows:

ra11 − sa12 = b1

ra21 − sa22 = b2 (10.68)

which yields

r =
(a22b1 − a12b2)

∆
(10.69)

s =
(a21b1 − a11b2)

∆
(10.70)

where

∆ =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ (10.71)

Solving for r and s we obtain

r =
yb2(xa2 − xa1) − xb2(ya2 − ya1)

xb1yb2 − yb1xb2
(10.72)

s =
yb1(xa2 − xa1) − xb1(ya2 − ya1)

xb1yb2 − yb1xb2
(10.73)

As a quick test, consider the intersection of the lines encoded by the following
vectors:

a1 =

⎡
⎣ 0

1
0

⎤
⎦b1 =

⎡
⎣ 3

3
3

⎤
⎦a2 =

⎡
⎢⎣

0
1
2
0

⎤
⎥⎦b2 =

⎡
⎣ 2

3
2

⎤
⎦

Substituting the x and y components in (10.72) and (10.73), we discover

r =
1
3

and s =
1
2

but for these to be consistent, they must satisfy the z component of the
original equation:

rzb1 = szb2 = za2 − za1

1
3
× 3 − 1

2
× 2 = 0 − 0

which is correct. Therefore, the point of intersection is given by either

pi = a1 + rb1 or
pi = a2 + sb2

10 Analytic Geometry 173

Let’s try both, just to prove the point:

xi = 0 +
1
3
3 = 1 xi = 0 +

1
2
2 = 1

yi = 1 +
1
3
3 = 2 yi =

1
2

+
1
2
3 = 2

zi = 0 +
1
3
3 = 1 zi = 0 +

1
2
2 = 1

Therefore, the point of intersection point is (1, 2, 1).
Now let’s take two lines that don’t intersect, and also exhibit some linear

dependency:

a1 =

⎡
⎣ 0

1
0

⎤
⎦ b1 =

⎡
⎣ 2

2
0

⎤
⎦ a2 =

⎡
⎣ 0

2
0

⎤
⎦ b2 =

⎡
⎣ 2

2
1

⎤
⎦

Taking the x and y components we discover that the determinant ∆ is zero,
which has identified the linear dependency. Taking the y and z components
the determinant is non-zero, which permits us to computer r and s using

r =
zb2(ya2 − ya1) − yb2(za2 − za1)

yb1zb2 − zb1yb2
(10.74)

s =
zb1(ya2 − ya1) − yb1(za2 − za1)

yb1zb2 − zb1yb2
(10.75)

r =
1(2 − 1) − 2(0 − 0)

2 × 1 − 0 × 2
=

1
2

s =
0(2 − 1) − 2(0 − 0)

2 × 1 − 0 × 2
=

0
2

= 0

But these values of r and s must also apply to the x components:

rxb1 − sxb2 = xa2 − xa1

1
2
× 2 − 0 × 2 �= 0 − 0

which they clearly do not, therefore the lines do not intersect.
Now let’s proceed with the equation of a plane, and then look at how to

compute the intersection of a line with a plane using a similar technique.

10.7 Equation of a Plane

We now consider four ways of representing a plane equation: the Cartesian
form, general form, parametric form and a plane from three points.

174 Mathematics for Computer Graphics

10.7.1 Cartesian Form of the Plane Equation

One popular method of representing a plane equation is the Cartesian form,
which employs a vector normal to the plane’s surface and a point on the plane.
The equation is derived as follows.

Let n be a nonzero vector normal to the plane and P0(x0, y0, z0) a point on
the plane. P(x, y, z) is any other point on the plane. Figure 10.29 illustrates
the scenario.

The normal vector is defined as

n = ai + bj + ck

and the position vectors for P0 and P are p0 = x0i + y0j + z0k and p =
xi + yj + zk respectively. From Figure 10.29 we observe that

q = p − p0

and as n is orthogonal to q
n · q = 0

therefore
n · (p − p0) = 0

which expands into
n · p = n · p0 (10.76)

Writing (10.76) in its Cartesian form we obtain

ax + by + cz = ax0 + by0 + cz0

but ax0 + by0 + cz0 is a scalar quantity associated with the plane and can be
replaced by d.

Therefore
ax + by + cz = d (10.77)

which is the Cartesian form of the plane equation.

P0

P
p

p0
q

n

X

Y

Z

h
a

Fig. 10.29. The vector n is normal to the plane, which also contains a point
P0(x0, y0, z0). P (x, y, z) is any other point on the plane.

10 Analytic Geometry 175

The value of d has the following geometric interpretation.
In Figure 10.29 the perpendicular distance from the origin to the plane is

h = ‖p0‖ cos(α)

therefore
n · p0 = ‖n‖‖p0‖ cos(α) = h‖n‖

therefore the plane equation can be also expressed as

ax + by + cz = h‖n‖ (10.78)

Dividing (10.78) by ‖n‖ we obtain

a

‖n‖x +
b

‖n‖y +
c

‖n‖z = h

where
h = ‖n‖ =

√
a2 + b2 + c2

What this means is that when a unit normal vector is used, h is the perpen-
dicular distance from the origin to the plane.

Let’s investigate this equation with an example.
Figure 10.30 shows a plane represented by the normal vector n = j + k

and a point on the plane P0(0, 1, 0)
Using (10.77) we have

0x + 1y + 1z = 0 × 0 + 1 × 1 + 1 × 0 = 1

therefore, the plane equation is

y + z = 1

If we normalize the equation to create a unit normal vector, we have

y√
2

+
z√
2

=
1√
2

where the perpendicular distance from the origin to the plane is
1√
2
.

XZ

Y

O

n P01

1

Fig. 10.30. A plane represented by the normal vector n and a point P0 (0, 1, 0).

176 Mathematics for Computer Graphics

10.7.2 General Form of the Plane Equation

The general form of the equation of a plane is expressed as

Ax + By + Cz + D = 0

which means that the Cartesian form is translated into the general form by
making

A = a, B = b, C = c, D = −d

10.7.3 Parametric Form of the Plane Equation

Another method of representing a plane is to employ two vectors and a point
that lie on the plane. Figure 10.31 illustrates a scenario where vectors a and
b, and the point T (xT , yT , zT) lie on a plane.

We now identify any other point on the plane P(x, y, z) with its associated
position vector p.

The point T also has its associated position vector t.
Using vector addition we can write

c = λa + εb

where λ and ε are two scalars such that c locates the point P.
We can now write

p = t + c (10.79)

therefore

xP = xT + λxa + εxb

yP = yT + λya + εyb

zP = zT + λza + εzb

which means that the coordinates of any point on the plane are formed from
the coordinates of the known point on the plane, and a linear mixture of the
components of the two vectors.

Y

XZ
Tt

b

e b

la

a

c

P

p

Fig. 10.31. The plane is defined by the vectors a and b and the point T (xT , yT , zT).

10 Analytic Geometry 177

1

X

Y

Z

T

Pp

l ae b
t

Fig. 10.32. The plane is defined by the vectors a and b, and the point T (1, 1, 1).

Let’s illustrate this vector approach with an example.
Figure 10.32 shows a plane containing the vectors a = i and b = k, and

the point T (1, 1, 1) with its position vector t = i + j + k.
By inspection, the plane is parallel to the xz -plane and intersects the y-axis

at y = 1.
From (10.79) we can write

p = t + λa + εb

where λ and ε are arbitrary scalars.
For example, if λ = 2 and ε = 1

xP = 1 + 2 × 1 + 1 × 0 = 3
yP = 1 + 2 × 0 + 1 × 0 = 1
zP = 1 + 2 × 0 + 1 × 1 = 2

Therefore, the point (3, 1, 2) is on the plane.

10.7.4 Converting from the Parametric to the General Form

It is possible to convert from the parametric form to the general form of the
plane equation using the following formulae:

λ =
(a · b) (b · t) − (a · t) ‖b‖2

‖a‖2‖b‖2 − (a · b)2

ε =
(a · b) (a · t) − (b · t) ‖a‖2

‖a‖2‖b‖2 − (a · b)2

The resulting point P (xP , yP , zP) is perpendicular to the origin.

If vectors a and b are unit vectors, λ and ε become

λ =
(a · b) (b · t) − a · t

1 − (a · b)2 (10.80)

178 Mathematics for Computer Graphics

ε =
(a · b) (a · t) − b · t

1 − (a · b)2 (10.81)

P ’s position vector p is also the plane’s normal vector. Then

xP = xT + λxa + εxb

yP = yT + λya + εyb

zP = zT + λza + εzb

The normal vector is
p = xP i + yP j + zPk

and because ‖p‖ is the perpendicular distance from the plane to the origin
we can state

xP

‖p‖x +
yP

‖p‖y +
zP

‖p‖z = ‖p‖

or in the general form of the plane equation:

Ax + By + Cz + D = 0

where

A =
xP

‖p‖ B =
yP

‖p‖ C =
zP

‖p‖ D = −‖p‖

Figure 10.33 illustrates a plane inclined 45◦ to the y- and z -axes and parallel
to the x -axis.

The vectors for the parametric equation are

a = j − k

b = i

t = k

1
XZ

Y

O

1

t
e b

l a

P

p

Fig. 10.33. The vectors a and b are parallel to the plane and the point (0, 0, 1) is on
the plane.

10 Analytic Geometry 179

substituting these components in (10.80) and (10.81) we have

λ =
(0)(0) − (−1) × 1

2 × 1 − (0)
=

1
2

ε =
(0)(−1) − (0) × 2

2 × 1 − (0)
= 0

therefore

xP = 0 +
1
2
× 0 + 0 × 1 = 0

yP = 0 +
1
2
× 1 + 0 × 0 =

1
2

zP = 1 +
1
2
(−1) + 0 × 0 =

1
2

The point
(

0,
1
2
,

1
2

)
has position vector p, where

‖p‖ =

√
02 +

1
2

2
+

1
2

2
=

1
2

√
2

the plane equation is

0x +

1
2

1
2

√
2
y +

1
2

1
2

√
2
z − 1

2

√
2 = 0

which simplifies to
1
2

√
2y +

1
2

√
2z − 1

2

√
2 = 0

or
y + z − 1 = 0

10.7.5 Plane Equation from Three Points

Very often in computer graphic problems we require to find the plane equation
from three known points. To begin with, the three points must be distinct and
not lie on a line. Figure 10.34 shows three points R, S and T, from which we
create two vectors u =

−→
RS and v =

−→
RT . The vector product u × v then

provides a vector normal to the plane containing the original points. We now
take another point P (x, y, z) and form a vector w =

−→
RP . The scalar product

w·(u×v) = 0 if P is in the plane containing the original points. This condition
can be expressed as a determinant and converted into the general equation of
a plane. The three points are assumed to be in a counter-clockwise sequence
viewed from the direction of the surface normal.

180 Mathematics for Computer Graphics

P

S

R

T

u 3 v

w
v

u

Fig. 10.34. The vectors used to determine a plane equation from three points R, S
and T.

We begin with

u × v =

∣∣∣∣∣∣
i j k

xu yu zu

xv yv zv

∣∣∣∣∣∣
As w is perpendicular to u × v

w · (u × v) =

∣∣∣∣∣∣
xw yw zw

xu yu zu

xv yv zv

∣∣∣∣∣∣ = 0

Expanding the determinant we obtain

xw

∣∣∣∣ yu zu

yv zv

∣∣∣∣ + yw

∣∣∣∣ zu xu

zv xv

∣∣∣∣ + zw

∣∣∣∣ xu yu

xv yv

∣∣∣∣ = 0

which becomes

(x − xR)
∣∣∣∣ yS − yR zS − zR

yT − yR zT − zR

∣∣∣∣ + (y − yR)
∣∣∣∣ zS − zR xS − xR

zT − zR xT − xR

∣∣∣∣ + (z − zR)

×
∣∣∣∣ xS − xR yS − yR

xT − xR yT − yR

∣∣∣∣ = 0

This can be arranged in the form ax + by + cz + d = 0
where

a =
∣∣∣∣ yS − yR zS − zR

yT − yR zT − zR

∣∣∣∣ b =
∣∣∣∣ zS − zR xS − xR

zT − zR xT − xR

∣∣∣∣
c =

∣∣∣∣ xS − xR yS − yR

xT − xR yT − yR

∣∣∣∣ d = −(axR + byR + czR)

or

a =

∣∣∣∣∣∣
1 yR zR

1 yS zS

1 yT zT

∣∣∣∣∣∣ b =

∣∣∣∣∣∣
xR 1 zR

xS 1 zS

xT 1 zT

∣∣∣∣∣∣ c =

∣∣∣∣∣∣
xR yR 1
xS yS 1
xT yT 1

∣∣∣∣∣∣
d = −(axR + byR + czR)

10 Analytic Geometry 181

As an example, consider the three points R (0,0,1), S (1,0,0), T (0,1,0). There-
fore

a =

∣∣∣∣∣∣
1 0 1
1 0 0
1 1 0

∣∣∣∣∣∣ = 1 b =

∣∣∣∣∣∣
0 1 1
1 1 0
0 1 0

∣∣∣∣∣∣ = 1 c =

∣∣∣∣∣∣
0 0 1
1 0 1
0 1 1

∣∣∣∣∣∣ = 1

d = −(1 × 0 + 1 × 0 + 1 × 1) = −1

and the plane equation is

x + y + z − 1 = 0

10.8 Intersecting Planes

When two non-parallel planes intersect they form a straight line at the in-
tersection, which is parallel to both planes. This line can be represented as a
vector, whose direction is revealed by the vector product of the planes’ sur-
face normals. However, we require a point on this line to establish a unique
vector equation; a useful point is chosen as P0, whose position vector p0 is
perpendicular to the line.

Figure 10.35 shows two planes with normal vectors n1 and n2 intersecting
to create a line represented by n3, whilst P0(x0, yo, z0) is a particular point
on n3 and P(x, y, z) is any point on the line.

We start the analysis by defining the surface normals:

n1 = a1i + b1j + c1k

n2 = a2i + b2j + c2k

next we define p and p0:

p = xi + yj + zk

p0 = x0i + y0j + z0k

X

Y

Z

PP0

n1

n2

n3

pp0

Fig. 10.35. Two intersecting planes create a line of intersection.

182 Mathematics for Computer Graphics

Now we state the plane equations in vector form:

n1 · p + d1 = 0
n2 · p + d2 = 0

The geometric significance of the scalars d1 and d2 has already been described
above. Let’s now define the line of intersection as

p = p0 + λn3

where λ is a scalar.
Because the line of intersection must be orthogonal to n1 and n2

n3 = a3i + b3j + c3k = n1 × n2

Now we introduce P0 as this must satisfy both plane equations, therefore

n1 · p0 = −d1 (10.82)
n2 · p0 = −d2 (10.83)

and as P0 is such that p0 is orthogonal to n3

n3 · p0 = 0 (10.84)

Equations (10.82)–(10.84) form three simultaneous equations, which reveal
the point P0. These can be represented in matrix form as⎡

⎣ −d1
−d2
0

⎤
⎦ =

⎡
⎣ a1 b1 c1

a2 b2 c2
a3 b3 c3

⎤
⎦ ·

⎡
⎣ x0

y0
z0

⎤
⎦

or ⎡
⎣ d1

d2
0

⎤
⎦ = −

⎡
⎣ a1 b1 c1

a2 b2 c2
a3 b3 c3

⎤
⎦ ·

⎡
⎣ x0

y0
z0

⎤
⎦

therefore
x0∣∣∣∣∣∣

d1 b1 c1
d2 b2 c2
0 b3 c3

∣∣∣∣∣∣
=

y0∣∣∣∣∣∣
a1 d1 c1
a2 d2 c2
a3 0 c3

∣∣∣∣∣∣
=

z0∣∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b3 0

∣∣∣∣∣∣
=

−1
DET

which enables us to state

x0 =
d2

∣∣∣∣ b1 c1
b3 c3

∣∣∣∣ − d1

∣∣∣∣ b2 c2
b3 c3

∣∣∣∣
DET

y0 =
d2

∣∣∣∣ a3 c3
a1 c1

∣∣∣∣ − d1

∣∣∣∣ a3 c3
a2 c2

∣∣∣∣
DET

z0 =
d2

∣∣∣∣ a1 b1
a3 b3

∣∣∣∣ − d1

∣∣∣∣ a2 b2
a3 b3

∣∣∣∣
DET

10 Analytic Geometry 183

where

DET =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
The line of intersection is then given by

p = p0 + λn3

If DET = 0 the line and plane are parallel.
To illustrate this, let the two intersecting planes be the xy-plane and the

xz -plane, which means that the line of intersection will be the y-axis, as shown
in Figure 10.36.

The plane equations are z = 0 and x = 0 therefore

n1 = k

n2 = i

and d1 = 0 and d2 = 0
We now compute n3, DET, x0, y0, z0:

n3 =

∣∣∣∣∣∣
i j k
0 0 1
1 0 0

∣∣∣∣∣∣ = j

DET =

∣∣∣∣∣∣
0 0 1
1 0 0
0 1 0

∣∣∣∣∣∣ = 1

x0 =
0
∣∣∣∣ 0 1

1 0

∣∣∣∣ − 0
∣∣∣∣ 0 0

1 0

∣∣∣∣
1

= 0

y0 =
0
∣∣∣∣ 0 0

0 1

∣∣∣∣ − 0
∣∣∣∣ 0 0

1 0

∣∣∣∣
1

= 0

X

Y

Z n1n2

P0

n3

P

Fig. 10.36. The two intersecting planes create a line of intersection coincident with
the y-axis.

184 Mathematics for Computer Graphics

z0 =
0
∣∣∣∣ 0 0

0 1

∣∣∣∣ − 0
∣∣∣∣ 1 0

0 1

∣∣∣∣
1

= 0

Therefore the line equation is p = λn3.
where n3 = j, which is the y-axis.

10.8.1 Intersection of Three Planes

Three mutually intersecting planes will intersect at a point as shown in Fig-
ure 10.37, and we can find this point by using a similar strategy to the one
used in two intersecting planes by creating three simultaneous plane equations
using determinants.

Figure 10.37 shows three planes intersecting at the point P (x, y, z).
The three planes can be defined by the following equations:

a1x + b1y + c1z + d1 = 0
a2x + b2y + c2z + d2 = 0
a3x + b3y + c3z + d3 = 0

which means that they can be rewritten as⎡
⎣ −d1

−d2
−d3

⎤
⎦ =

⎡
⎣ a1 b1 c1

a2 b2 c2
a3 b3 c3

⎤
⎦ ·

⎡
⎣ x

y
z

⎤
⎦

or ⎡
⎣ d1

d2
d3

⎤
⎦ = −

⎡
⎣ a1 b1 c1

a2 b2 c2
a3 b3 c3

⎤
⎦ ·

⎡
⎣ x

y
z

⎤
⎦

or in determinant form:
x∣∣∣∣∣∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣
=

y∣∣∣∣∣∣
a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣
=

z∣∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣
=

−1
DET

X

Y

Z

P

Fig. 10.37. Three mutually intersecting planes.

10 Analytic Geometry 185

where

DET =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
Therefore we can state that

x = −

∣∣∣∣∣∣
d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣
DET

y = −

∣∣∣∣∣∣
a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣
DET

z = −

∣∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣
DET

If DET = 0 two of the planes, at least, are parallel.
Let’s test these equations with a simple example. Figure 10.38 shows three

intersecting planes.
The planes shown in Figure 10.38 have the following equations:

x + y + z − 2 = 0
z = 0

y − 1 = 0

therefore

DET =

∣∣∣∣∣∣
1 1 1
0 0 1
0 1 0

∣∣∣∣∣∣ = −1

Z

Y

X
22

2

ki + j + k
j

P

Fig. 10.38. Three planes intersecting at point P.

186 Mathematics for Computer Graphics

and

x = −

∣∣∣∣∣∣
−2 1 1

0 0 1
−1 1 0

∣∣∣∣∣∣
−1

= 1

y = −

∣∣∣∣∣∣
1 −2 1
0 0 1
0 −1 0

∣∣∣∣∣∣
−1

= 1

z = −

∣∣∣∣∣∣
1 1 −2
0 0 0
0 1 −1

∣∣∣∣∣∣
−1

= 0

which means that the intersection point is (1, 1, 0), which is correct.

10.8.2 Angle between Two Planes

Calculating the angle between two planes is relatively easy and can be found
by taking the dot product of the planes’ normals. Figure 10.39 shows two
planes with α representing the angle between the two surface normals n1
and n2.

Let the plane equations be

ax1 + by1 + cz1 + d1 = 0
ax2 + by2 + cz2 + d2 = 0

therefore the surface normals are

n1 = a1i + b1j + c1k

n2 = a2i + b2j + c2k

Taking the dot product of n1 and n2:

n1 · n2 = ‖n1‖‖n2‖ cos(α)

X

Y

Z

n1

n2

a

Fig. 10.39. The angle between two planes is the angle between their surface normals.

10 Analytic Geometry 187

Z

Y

X

n2

1 1

1

n1
a

Fig. 10.40. α is the angle between the two planes.

and
α = cos−1

(
n1 · n2

‖n1‖‖n2‖
)

Figure 10.40 shows two planes with normal vectors n1 and n2.
The plane equations are

x + y + z − 1 = 0

and
z = 0

therefore
n1 = i + j + k

and
n2 = k

therefore
‖n1‖ =

√
3 and ‖n2‖ = 1

and
α = cos−1

(
1√
3

)
= 54.74◦

10.8.3 Angle between a Line and a Plane

The angle between a line and a plane is calculated using a similar technique
used for calculating the angle between two planes. If the line equation employs
a direction vector, the angle is determined by taking the dot product of this
vector and the plane’s normal. Figure 10.41 shows such a scenario where n is
the plane’s surface normal and v is the line’s direction vector.

If the plane equation is

ax + by + cz + d = 0

188 Mathematics for Computer Graphics

Z

Y

X

T

t
v

p n

P

a

Fig. 10.41. α is the angle between the plane’s surface normal and the line’s direction
vector.

then its surface normal is
n = ai + bj + ck

If the line’s direction vector is v and T (xT , yT , zT) is a point on the line, then
any point on the line is given by the position vector p:

p = t + λv

therefore we can write
n · v = ‖n‖ ‖v‖ cos(α)

and
α = cos−1

(
n · v

‖n‖ ‖v‖
)

When the line is parallel to the plane n · v = 0.
As an example, consider the scenario illustrated in Figure 10.42 where the

plane equation is
x + y + z − 1 = 0

therefore the surface normal is given by n:

n = i + j + k

Z

Y

X

a

1 1

1
n

Fig. 10.42. The required angle is between a and b.

10 Analytic Geometry 189

and the line’s direction vector is a:

a = i + j

therefore
‖n‖ =

√
3 and ‖a‖ =

√
2

and
α = cos−1

(
2√
6

)
= 35.26◦

10.8.4 Intersection of a Line with a Plane

Given a line and a plane, they will either intersect or are parallel. Either way,
both conditions can be found using some simple vector analysis, as shown in
Figure 10.43.

The objective is to identify a point P that is on the line and the plane.
Let the plane equation be

ax + by + cz + d = 0

where
n = ai + bj + ck

P is a point on the plane with position vector

p = xi + yj + zk

therefore
n · p + d = 0

Let the line equation be
p = t + λv

where
t = xT i + yT j + zTk

Z

Y

X

T

t

vP

p

n

Fig. 10.43. The vectors required to determine whether a line and plane intersect.

190 Mathematics for Computer Graphics

Z

Y

X

v

P(x, y, z)
T

1

11

n

Fig. 10.44. P identifies the point where a line intersects a plane.

and
v = xvi + yvj + zvk

therefore, the line and plane will intersect for some λ such that

n · (t + λv) + d = n · t + λn · v + d = 0

therefore

λ =
−(n · t + d)

n · v
for the intersection point. The position vector for P is p = t + λv

If n · v = 0 the line and plane are parallel.
Let’s test this result with the scenario shown in Figure 10.44.
Given the plane

x + y + z − 1 = 0
n = i + j + k

and the line
p = t + λv

where
t = 0

and
v = i + j

then

λ =
−(1 × 0 + 1 × 0 + 1 × 0 − 1)

1 × 1 + 1 × 1 + 1 × 0
=

1
2

therefore, the point of intersection is P

(
1
2
,
1
2
, 0

)
.

10 Analytic Geometry 191

10.9 Summary

Mixing vectors with geometry is a powerful analytical tool, and helps us to
solve many problems associated with computer graphics, such as rendering,
modelling, collision detection and physically based animation. Unfortunately,
there has not been space to investigate every topic, but I hope that what
has been covered here will enable you to solve other problems with greater
confidence

11
Barycentric Coordinates

Cartesian coordinates are a fundamental concept in mathematics and are cen-
tral to computer graphics. Such rectangular coordinates are just offsets rela-
tive to some origin. Other coordinate systems also exist such as polar, spherical
and cylindrical coordinates, and they, too, require an origin. Barycentric co-
ordinates, on the other hand, locate points relative to existing points, rather
than to an origin and are known as local coordinates. The German mathe-
matician August Möbius (1790–1868) is credited with their discovery.

‘barus’ is the Greek entomological root for ‘heavy ’, and barycentric coor-
dinates were originally used for identifying the centre of mass of shapes and
objects. It is interesting to note that the prefixes ‘bari ’, ‘bary ’ and ‘baro’ have
also influenced other words such as baritone, baryon (heavy atomic particle)
and barometer.

Although barycentric coordinates are used in geometry, computer graphics,
relativity and global time systems, they do not appear to be a major topic in
a typical math syllabus. Nevertheless, they are important and I would like to
describe what they are and how they can be used in computer graphics.

The idea behind barycentric coordinates can be approached from different
directions, and I have chosen mass points and linear interpolation. But before
we begin this analysis, it will be useful to investigate a rather elegant theorem
known as Ceva’s Theorem, which we will invoke later in this chapter.

11.1 Ceva’s Theorem

Giovanni Ceva (1647–1734) is credited with a theorem associated with the
concurrency of lines in a triangle. It states that: In triangle ∆ABC, the lines
AA′, BB′ and CC ′, where A′, B′ and C ′ are points on the opposite sides facing

194 Mathematics for Computer Graphics

vertices A, B and C respectively, are concurrent (intersect at a common point)
if, and only if

AC ′

C ′B
· BA′

A′C
· CB′

B′A
= 1

Figure 11.1 shows such a scenario.
There are various ways of proving this theorem, (see Advanced Euclidean

Geometry by Alfred Posamentier) and perhaps the simplest proof is as follows.
Figure 11.2 shows triangle ∆ABC with line AA′ extended to R and BB′

extended to S, where line SR is parallel to line AB. The resulting geometry
creates a number of similar triangles:

∆ABA′ : ∆RCA′ ⇒ A′C
BA′ =

CR

AB
(11.1)

∆ABB′ : ∆CSB′ ⇒ B′A
CB′ =

AB

SC
(11.2)

A B

C

A¢B ¢

C ¢

P

Fig. 11.1. The geometry associated with Ceva’s Theorem.

A B

C

A¢B ¢

C ¢

P

RS

Fig. 11.2. The geometry for proving Ceva’s Theorem.

11 Barycentric Coordinates 195

∆BPC ′ : ∆CSP ⇒ C ′B
SC

=
C ′P
PC

(11.3)

∆AC ′P : ∆RCP ⇒ AC ′

CR
=

C ′P
PC

(11.4)

From (11.3) and (11.4) we get

C ′B
SC

=
AC ′

CR

which can be rewritten as
C ′B
AC ′ =

SC

CR
(11.5)

The product of (11.1), (11.2) and (11.5) is

A′C
BA′ ·

B′A
CB′ ·

C ′B
AC ′ =

CR

AB
· AB

SC
· SC

CR
= 1 (11.6)

Rearranging the terms of (11.6) we get

AC ′

C ′B
· BA′

A′C
· CB′

B′A
= 1

which is rather an elegant relationship.

11.2 Ratios and Proportion

Central to barycentric coordinates are ratios and proportion, so let’s begin by
revising some fundamental formulae used in calculating ratios.

Imagine the problem of dividing £ 100 between two people in the ratio 2:3.
The solution lies in the fact that the money is divided into 5 parts (2 + 3),
where 2 parts go to one person and 3 parts to the other person. In this case,
one person receives £ 40 and the other £ 60. At a formal level, we can describe
this as follows.

A scalar A can be divided into the ratio r : s using the following expres-
sions:

r

r + s
A and

s

r + s
A.

Note that
r

r + s
+

s

r + s
= 1

and

1 − r

r + s
=

s

r + s

196 Mathematics for Computer Graphics

Furthermore, the above formulae can be extended to incorporate any number
of ratio divisions. For example, A can be divided into the ratio r : s : t by the
following:

r

r + s + t
A,

s

r + s + t
A and

t

r + s + t
A

similarly
r

r + s + t
+

s

r + s + t
+

t

r + s + t
= 1

These expressions are very important as they show the emergence of barycen-
tric coordinates. For the moment, though, just remember their structure and
we will investigate some ideas associated with balancing weights.

11.3 Mass Points

We begin by calculating the centre of mass – the centroid – of two masses.
Consider the scenario shown in Figure 11.3 where two masses mA and mB are
placed at the ends of a massless rod.

If mA = mB a state of equilibrium is achieved by placing the fulcrum mid-
way between the masses. If the fulcrum is moved towards mA, mass mB will
have a turning advantage and the rod rotates clockwise.

To calculate a state of equilibrium for a general system of masses, consider
the geometry illustrated in Figure 11.4, where two masses mA and mB , are
positioned xA and xB at A and B respectively. When the system is in balance
we can replace the two masses by a single mass mA + mB at the centroid
defined by x̄.

A balance condition arises when the LHS turning moment equals the RHS
turning moment. The turning moment being the product of a mass by its
offset from the fulcrum.

Equating turning moments, equilibrium is reached when

mB(xB − x̄) = mA(x̄ − xA)

mA mB

Fig. 11.3. Two masses fixed at the ends of a massless rod.

A B

mA

xA

xB − x

xB

mB

(mA + mB)

x

x − xA

Fig. 11.4. The geometry used for equating turning moments.

11 Barycentric Coordinates 197

mBxB − mBx̄ = mAx̄ − mAxA

(mA + mB)x̄ = mAxA + mBxB

x̄ =
mAxA + mBxB

mA + mB
=

mA

mA + mB
xA +

mB

mA + mB
xB (11.7)

For example, if mA = 6 and mB = 12, and positioned at xA = 0 and xB = 12
respectively, the centroid is located at

x̄ =
6
18

× 0 +
12
18

× 12 = 8

Thus we can replace the two masses by a single mass of 18 located at x̄ = 8.
Note that the terms in (11.7) mA/(mA +mB) and mB/(mA +mB) sum to

1 and are identical to those used above for calculating ratios. They are also
called the barycentric coordinates of x̄ relative to the points A and B.

Using the general form of (11.7) any number of masses can be analysed
using

x̄ =

n∑
i=1

mixi

n∑
i=1

mi

where mi is a mass located at xi. Furthermore, we can compute the
y-component of the centroid ȳ using

ȳ =

n∑
i=1

miyi

n∑
i=1

mi

and in 3D the z -component of the centroid z̄ is

z̄ =

n∑
i=1

mizi

n∑
i=1

mi

To recap, (11.7) states that

x̄ =
mA

mA + mB
xA +

mB

mA + mB
xB

therefore, we can write

ȳ =
mA

mA + mB
yA +

mB

mA + mB
yB

which allows us to state

P̄ =
mA

mA + mB
A +

mB

mA + mB
B

198 Mathematics for Computer Graphics

where A and B are the position vectors for the mass locations A and B
respectively, and P̄ is the position vector for the centroid P̄ .

If we extend the number of masses to three: mA, mB and mC , which are
organized as a triangle, then we can write

P̄ =
mA

mA + mB + mC
A +

mB

mA + mB + mC
B +

mC

mA + mB + mC
C (11.8)

The three multipliers of A, B and C are the barycentric coordinates of P̄
relative to the points A, B and C. Note that the number of coordinates is not
associated with the number of spatial dimensions, but the number of reference
points.

Now consider the scenario shown in Figure 11.5. If mA = mB = mC then
we can determine the location of A′, B′ and C ′ as follows:

1. We begin by placing a fulcrum under A and mid-way along BC as shown
in Figure 11.6.
The triangle will balance because mB = mC and A′ is

1
2
a from C and

1
2
a

from B.
2. Now we place the fulcrum under B and mid-way along CA as shown in

Figure 11.7.

A B

C

C ′

B ′
A ′

P

a
b

c

mC

mBmA

Fig. 11.5. Three masses organized as a triangle.

A

CB

c b

1
2
a1

2
a

A ′mB

mA

mC

Fig. 11.6. Balancing the triangle along AA′.

11 Barycentric Coordinates 199

C

1
2

a

1
2

b 1
2

b

1
2

a

A ′

A

B

c

B ′

mB

mAmC

Fig. 11.7. Balancing the triangle along BB′.

A B

C

A ′
B ′

C ′

mA + mB

P

mC

mBmA

1
2

a
1
2

b

1
2

b

1
2

c 1
2

c

1
2

a

Fig. 11.8. P̄ is the centroid of the triangle.

Once more, the triangle will balance, because mC = mA and B′ will be
1
2
b

from C and
1
2
b from A.

3. Finally, we do the same for C and the edge AB. Figure 11.8 shows the final
scenario.

Ceva’s Theorem confirms that the medians AA′, BB′ and CC ′ are con-
current at P̄ , because

AC ′

C ′B
· BA′

A′C
· CB′

B′A
=

1
2c
1
2c

·
1
2a
1
2a

·
1
2b
1
2b

= 1

Arbitrarily, we select the median C ′C. At C ′ we have an effective mass of
mA + mB and mC at C. For a balance condition

(mA + mB) × C ′P̄ = mC × P̄C

and as the masses are equal, C ′P̄ must be
1
3

along the median C ′C.
And if we use (11.8) we obtain

P̄ =
1
3
A +

1
3
B +

1
3
C

which locates the coordinates of the centroid correctly.

200 Mathematics for Computer Graphics

A B

C

1 2

A′

C ′

B ′

P

3

1
4

b 2
5

b

3
5

a
3
4

b

2
3

c 1
3

c

Fig. 11.9. How the masses determine the positions of A′, B′ and C ′.

Now let’s consider another example where mA = 1, mB = 2 and mC = 3,
as shown in Figure 11.9.

For a balance condition A′ must be 3
5a from B and 2

5a from C. Equally,
B′ must be 1

4b from C and 3
4b from A. Similarly, C ′ must be 2

3c from A and
1
3c from B.

Ceva’s Theorem confirms that the lines AA′, BB′ and CC ′ are concurrent
at P̄ , because

AC ′

C ′B
· BA′

A′C
· CB′

B′A
=

2
3c
1
3c

·
3
5a
2
5a

·
1
4b
3
4b

= 1

Arbitrarily select C ′C. At C ′ we have an effective mass of 3 (1 + 2) and 3 at C,
which means that for a balance condition P̄ is mid-way along C ′C. Similarly,
P̄ is 1

6 along A′A and 1
3 along B′B.

Once more, if we use (11.8) in this scenario we obtain

P̄ =
1
6
A +

1
3
B +

1
2
C

Note that the multipliers of A, B and C are identical to the proportions of
P̄ along A′A, B′B and C ′C. Let’s prove why this is so.

Figure 11.10 shows three masses with the triangle’s sides divided into their
various proportions to derive P̄ .

On the line A′A we have mA at A and effectively mB + mC at A′, which
means that P̄ divides A′A in the ratio mA

mA+mB+mC
: mB+mC

mA+mB+mC
.

On the line B′B we have mB at B and effectively mA + mC at B′, which
means that P̄ divides B′B in the ratio mB

mA+mB+mC
: mA+mC

mA+mB+mC
.

Similarly, on the line C ′C we have mC at C and effectively mA + mB at
C ′, which means that P̄ divides C ′C in the ratio mC

mA+mB+mC
: mA+mB

mA+mB+mC
.

11 Barycentric Coordinates 201

A B

C

C ′

A ′B ′

P

mC

mBmA

mB

mB + mc

mB + mC

a
mA

mA + mc

mA + mc

a

mc

mB + mc
a

mc

mA + mc
b

mB

mA + mB

mA + mBc
mA

mA + mB
c

Fig. 11.10. How the masses determine the positions of A′, B′ and C ′.

To summarize, given three masses mA, mB and mC located at A, B and
C, the centroid P̄ is given by

P̄ =
mA

mA + mB + mC
A +

mB

mA + mB + mC
B +

mC

mA + mB + mC
C (11.9)

If we accept that mA, mB and mC can have any value, including zero, then
the barycentric coordinates of P̄ will be affected by these values. For example,
if mB = mC = 0 and mA = 1, then P̄ will be located at A with barycentric
coordinates (1, 0, 0). Similarly, if mA = mC = 0 and mB = 1, then P̄ will be
located at B with barycentric coordinates (0, 1, 0). And if mA = mB = 0 and
mC = 1, then P̄ will be located at C with barycentric coordinates (0, 0, 1).

Now let’s examine a 3D example as illustrated in Figure 11.11. The fig-
ure shows three masses 4, 8 and 12 and their equivalent mass 24 located at
(x̄, ȳ, z̄).

The magnitude and coordinates of three masses are shown in the follow-
ing table, together with the barycentric coordinate ti. The column headed ti

12

4

24

x

y

z
X

Y

Z

8

Fig. 11.11. Three masses can be represented by a single mass located at the system’s
centroid.

202 Mathematics for Computer Graphics

expresses the masses as fractions of the total mass, i.e.

ti =
mi

m1 + m2 + m3

And we see that the centroid is located at (5, 5, 3).

mi ti xi yi zi tixi tiyi tizi

12 1
2 8 6 2 4 3 1

8 1
3 2 3 3 2

3 1 1

4 1
6 2 6 6 1

3 1 1

x̄ = 5 ȳ = 5 z̄ = 3

Having discovered barycentric coordinates in weight balancing, let’s see
how they emerge in linear interpolation.

11.4 Linear Interpolation

Suppose that we wish to find a value mid-way between two scalars A and B.
We could proceed as follows:

V = A +
1
2

(B − A) = A +
1
2
B − 1

2
A =

1
2
A +

1
2
B

which seems rather obvious. Similarly, to find a value one-third between A
and B, we could write

V = A +
1
3

(B − A) = A +
1
3
B − 1

3
A =

2
3
A +

1
3
B

Generalizing, to find some fraction t between A and B we can write

V = A + t (B − A) = A + tB − tA = (1 − t)A + tB (11.10)

For example, to find a value 3
4 between 10 and 18 we have

V =
(

1 − 3
4

)
× 10 +

3
4
× 18 = 2.5 + 13.5 = 16

Although this is a trivial formula, it is very useful when interpolating between
two numerical values. Let’s explore (11.10) in greater detail.

To begin with, it is worth noting that the multipliers of A and B sum to 1:

(1 − t) + t = 1

11 Barycentric Coordinates 203

Rather than using (1−t) as a multiplier, it is convenient to make a substitution
such as s = 1 − t, and we have

V = sA + tB

where
s = 1 − t

and s + t = 1 (11.10) is called a linear interpolant as it linearly interpolates
between A and B using the parameter t. It is also known as a lerp. The terms
s and t are the barycentric coordinates of V as they determine the value of
V relative to A and B.

Now let’s see what happens when we substitute coordinates for scalars.
We start with 2D coordinates A(xA, yA) and B(xB, yB), and position vectors
A, B and V and the following linear interpolant

V = sA + tB

where
s = 1 − t

and
s + t = 1

then

xV = sxA + txB

yV = syA + tyB

Figure 11.12 illustrates what happens when t varies between 0 and 1.
The point V slides along the line connecting A and B. When t = 0, V is

coincident with A, and when t = 1, V is coincident with B. The reader should
not be surprised that the same technique works in 3D.

A

B

V

yB

yV

yA

xA xV xB X

Y

t = 0

t = 1

Fig. 11.12. The position of V slides between A and B as t varies between 0 and 1.

204 Mathematics for Computer Graphics

A

C

B

yC

yB

yA

xA xBxC X

Y

r = 1

t = 1

V

xV

yV

s = 1

Fig. 11.13. The position of V moves between A, B and C depending on the value r,
s and t.

Now let’s extend the number of vertices to three in the form of a triangle
as shown in Figure 11.13. This time we will use r, s and t to control the
interpolation. We would start as follows:

V = rA + sB + tC

where A, B and C are the position vectors for A, B and C respectively, and
V is the position vector for the point V.

Let
r = 1 − s − t

and
r + s + t = 1

Once more, we begin with 2D coordinates A(xA, yA), B(xB, yB) and C(xC, yC)
where

xV = rxA + sxB + txC

yV = ryA + syB + tyC

When

r = 1, V is coincident with A;
s = 1, V is coincident with B;
t = 1, V is coincident with C.

Similarly, when

r = 0, V is located on the edge BC ;
s = 0, V is located on the edge CA;
t = 0, V is located on the edge AB.

For all other values of r, s and t, where r + s + t = 1 and 0 ≤ r, s, t ≤ 1,
V is inside triangle ∆ABC, otherwise it is outside the triangle.

11 Barycentric Coordinates 205

The triple (r, s, t) are barycentric coordinates and locate points relative to
A, B and C, rather than an origin. For example, the barycentric coordinates
of A, B and C are (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively.

All of the above formulae work equally well in three dimensions, so let’s
investigate how barycentric coordinates can locate points inside a 3D trian-
gle. However, before we start, let’s clarify what we mean by inside a tri-
angle. Fortunately, barycentric coordinates can distinguish points within the
triangle’s three sides; points coincident with the sides; and points outside
the triangle’s boundary. The range and value of the barycentric coordinates
provide the mechanism for detecting these three conditions.

Figure 11.14 illustrates a scenario with the points P1(x1, y1, z1), P2(x2, y2, z2)
and P3(x3, y3, z3). Using barycentric coordinates we can state that any point
P0(x0, y0, z0) inside or on the edge of triangle ∆P1P2P3 is defined by

x0 = rx1 + sx2 + tx3

y0 = ry1 + sy2 + ty3

z0 = rz1 + sz2 + tz3

where r + s + t = 1 and 0 ≤ r, s, t ≤ 1
If the triangle’s vertices are P1(0, 2, 0), P2(0, 0, 4) and P3(3, 1, 2) then we

can choose different values of r, s and t to locate P0 inside the triangle.
However, I would also like to confirm that P0 lies on the plane containing the
three points. To do this we require the plane equation for the three points,
which can be derived as follows.

Given P1(x1, y1, z1), P2(x2, y2, z2) and P3(x3, y3, z3), and the target plane
equation ax + by + cz + d = 0

then

a =

∣∣∣∣∣∣
1 y1 z1
1 y2 z2
1 y3 z3

∣∣∣∣∣∣

X

Y

Z

P4

P2

P3

P0

Fig. 11.14. A 3D triangle.

206 Mathematics for Computer Graphics

b =

∣∣∣∣∣∣
x1 1 z1
x2 1 z2
x3 1 z3

∣∣∣∣∣∣
c =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
and d = −(ax1 + by1 + cz1)

thus

a =

∣∣∣∣∣∣
1 2 0
1 0 4
1 1 2

∣∣∣∣∣∣ = 0

b =

∣∣∣∣∣∣
0 1 0
0 1 4
3 1 2

∣∣∣∣∣∣ = 12

c =

∣∣∣∣∣∣
0 2 1
0 0 1
3 1 1

∣∣∣∣∣∣ = 6

d = −(0 × 0 + 12 × 2 + 6 × 0) = −24

therefore, the plane equation is

12y + 6z = 24 (11.11)

If we substitute a point (x0, y0, z0) in the LHS of (11.11) and obtain a value
of 24, then the point is on the plane.

The following table shows various values of r, s and t, and the correspond-
ing position of P0. The table also confirms that P0 is always on the plane
containing the three points.

r s t x0 y0 z0 12y0 + 6z0

1 0 0 0 2 0 24
0 1 0 0 0 4 24
0 0 1 3 1 2 24
1
4

1
4

1
2 1 1

2 1 2 24

0 1
2

1
2 1 1

2
1
2 3 24

1
2

1
2 0 0 1 2 24

1
3

1
3

1
3 1 1 2 24

Now we are in a position to test whether a point is inside, on the boundary
or outside a 3D triangle.

11 Barycentric Coordinates 207

We begin by writing the three simultaneous equations defining P0 in matrix
form ⎡

⎣ x0
y0
z0

⎤
⎦ =

⎡
⎣ x1 x2 x3

y1 y2 y3
z1 z2 z3

⎤
⎦ ·

⎡
⎣ r

s
t

⎤
⎦

therefore

r∣∣∣∣∣∣
x0 x2 x3
y0 y2 y3
z0 z2 z3

∣∣∣∣∣∣
=

s∣∣∣∣∣∣
x1 x0 x3
y1 y0 y3
z1 z0 z3

∣∣∣∣∣∣
=

t∣∣∣∣∣∣
x1 x2 x0
y1 y2 y0
z1 z2 z0

∣∣∣∣∣∣
=

1∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣
and

r =

∣∣∣∣∣∣
x0 x2 x3
y0 y2 y3
z0 z2 z3

∣∣∣∣∣∣
DET

s =

∣∣∣∣∣∣
x1 x0 x3
y1 y0 y3
z1 z0 z3

∣∣∣∣∣∣
DET

t =

∣∣∣∣∣∣
x1 x2 x0
y1 y2 y0
z1 z2 z0

∣∣∣∣∣∣
DET

where

DET =

∣∣∣∣∣∣
x1 x2 x3
y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣
Using the three points P1(0, 2, 0), P2(0, 0, 4), P3(3, 1, 2) and arbitrary posi-
tions of P0, the values of r, s and t will identify whether P0 is inside or outside
triangle ∆P1P2P3. For example, the point P0(0, 2, 0) is a vertex and is classi-
fied as being on the boundary. To confirm this we calculate r, s and t, and
show that r + s + t = 1:

DET =

∣∣∣∣∣∣
0 0 3
2 0 1
0 4 2

∣∣∣∣∣∣ = 24

r =

∣∣∣∣∣∣
0 0 3
2 0 1
0 4 2

∣∣∣∣∣∣
24

= 1

208 Mathematics for Computer Graphics

s =

∣∣∣∣∣∣
0 0 3
2 2 1
0 0 2

∣∣∣∣∣∣
24

= 0

t =

∣∣∣∣∣∣
0 0 0
2 0 2
0 4 0

∣∣∣∣∣∣
24

= 0

therefore r+s+t = 1, but both s and t are zero which confirms that the point
(0, 2, 0) is on the boundary. In fact, as both coordinates are zero it confirms
that the point is located on a vertex.

Now let’s deliberately choose a point outside the triangle. For example,
P0 (4, 0, 3) is outside the triangle, which is confirmed by the corresponding
values of r, s and t :

r =

∣∣∣∣∣∣
4 0 3
0 0 1
3 4 2

∣∣∣∣∣∣
24

= −2
3

s =

∣∣∣∣∣∣
0 4 3
2 0 1
0 3 2

∣∣∣∣∣∣
24

=
3
4

t =

∣∣∣∣∣∣
0 0 4
2 0 0
0 4 3

∣∣∣∣∣∣
24

= 1
1
3

therefore
r + s + t = −2

3
+

3
4

+
4
3

= 1
5
12

which confirms that the point (4,0,3) is outside the triangle. Note that r < 0
and t > 1, which individually confirm that the point is outside the triangle’s
boundary.

11.5 Convex Hull Property

We have already shown that it is possible to determine whether a point is
inside or outside a triangle. But remember that triangles are always convex. So
can we test whether a point is inside or outside any polygon? Well the answer
is no, unless the polygon is convex. The reason for this can be understood by
considering the concave polygon shown in Figure 11.15.

11 Barycentric Coordinates 209

B

C

D

A

Fig. 11.15. A concave polygon.

If we use barycentric coordinates to define a point P0 as

P0 = rA + sB + tC + uD

where r + s + t + u = 1.
When t = 0, P0 can exist anywhere inside triangle ∆ABD. Thus, if any

vertex creates a concavity, it will be ignored by barycentric coordinates.

11.6 Areas

Barycentric coordinates are also known as areal coordinates due to their area
dividing properties. For example, in Figure 11.16 the areas of the three internal
triangles are in proportion to the barycentric coordinates of the point P

To prove this, let P have barycentric coordinates

P = rA + sB + tC

where
r + s + t = 1

and
0 ≤ r, s, t ≤ 1

A

P

C

B

t∆ABC

r∆ABCs∆ABC

Fig. 11.16. The areas of the internal triangles are directly proportional to the barycen-
tric coordinates of P.

210 Mathematics for Computer Graphics

If we use the notation area∆ABC to represent the area of the triangle
formed from the vertices A, B and C then area∆ABC equals the sum of the
areas of the smaller triangles:

area∆ABC = area∆ABP + area∆BCP + area∆CAP

But the area of any triangle ∆P1P2P3 equals

area∆P1P2P3 =
1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
therefore

area∆ABP =
1
2

∣∣∣∣∣∣
xA yA 1
xB yB 1
xP yP 1

∣∣∣∣∣∣
but

xP = rxA + sxB + txC

and
yP = ryA + syB + tyC

therefore

area∆ABP =
1
2

∣∣∣∣∣∣
xA yA 1
xB yB 1

rxA + sxB + txC ryA + syB + tyC 1

∣∣∣∣∣∣
which expands to

area∆ABP =
1
2

[
xAyB + rxByA + sxByB + txByC + rxAyA + sxByA + txCyA−
rxAyA − sxAyB − txAyC − xByA − rxAyB − sxByB − txCyB

]

=
1
2

[xAyB − xByA + r (xByA − xAyB) + s (xByA − xAyB)

+t (xByC − xCyB) + t (xCyA − xAyC)]

=
1
2

[xAyB − xByA + (1 − t) (xByA − xAyB) + t (xByC − xCyB)

+t (xCyA − xAyC)]

=
1
2

[−txByA + txAyB + txByC − txCyB + txCyA − txAyC]

and simplifies to

area∆ABP =
1
2
t

∣∣∣∣∣∣
xA yA 1
xB yB 1
xC yC 1

∣∣∣∣∣∣ = t × area∆ABC

11 Barycentric Coordinates 211

therefore
t =

area∆ABP

area∆ABC
similarly

area∆BCP = 1
2r

∣∣∣∣∣∣
xA yA 1
xB yB 1
xC yC 1

∣∣∣∣∣∣ = r × area∆ABC

r =
area∆BCP

area∆ABC

and

area∆CAP = 1
2s

∣∣∣∣∣∣
xA yA 1
xB yB 1
xC yC 1

∣∣∣∣∣∣ = s × area∆ABC

s =
area∆CAP

area∆ABC

thus, we see that the areas of the internal triangles are directly proportional
to the barycentric coordinates of P.

This is quite a useful relationship and can be used to resolve various geo-
metric problems. For example, let’s use it to find the radius and centre of the
inscribed circle for a triangle. We could approach this problem using classical
Euclidean geometry, but barycentric coordinates provide a powerful analytical
tool for resolving the problem very quickly.

Consider triangle ∆ABC with sides a, b, and c as shown in Figure 11.17.
The point P is the centre of the inscribed circle with radius R. From our
knowledge of barycentric coordinates we know that

P = rA + sB + tC

A B

C

P R

c

b
a

Fig. 11.17. The inscribed circle in triangle ∆ABC.

212 Mathematics for Computer Graphics

where
r + s + t = 1 (11.12)

We also know that the area properties of barycentric coordinates permit us
to state that

area∆BCP = r × area∆ABC =
1
2
aR

area∆CAP = s × area∆ABC =
1
2
bR

area∆ABP = t × area∆ABC =
1
2
cR

therefore

r =
aR

2 × area∆ABC
s =

bR

2 × area∆ABC
t =

cR

2 × area∆ABC

substituting r, s and t in (11.11) we get

R

2 × area∆ABC
(a + b + c) = 1

and
R =

2 × area∆ABC

a + b + c

Substituting R in the definitions of r, s and t we obtain

r =
a

a + b + c
s =

b

a + b + c
t =

c

a + b + c

and

xP = rxA + sxB + txC

yP = ryA + syB + tyC

To test this solution, consider the right-angled triangle in Figure 11.18, where
a =

√
200, b = 10, c = 10 and area∆ABC = 50. Therefore

R =
2 × 50

10 + 10 +
√

200
= 2.929

and

r =
√

200
34.1421

= 0.4142 s =
10

34.1421
= 0.2929 t =

10
34.1421

= 0.2929

therefore

xP = 0.4142 × 0 + 0.2929 × 10 + 0.2929 × 0 = 2.929
yP = 0.4142 × 0 + 0.2929 × 0 + 0.2929 × 10 = 2.929

11 Barycentric Coordinates 213

X

Y

10

10

200

r

(xP, yP)

Fig. 11.18. The inscribed circle for a triangle.

A

A ¢

BC ¢

B ¢

C

D

E

F

1 2

1

1

2

2

Fig. 11.19. Triangle ∆ABC with sides divided in the ratio 1:2.

Therefore, the inscribed circle has a radius of 2.929 and a centre with coordi-
nates (2.929, 2.929).

Let’s explore another example where we determine the barycentric coor-
dinates of a point using virtual mass points.

Figure 11.19 shows triangle ∆ABC where A′, B′ and C ′ divide BC, CA
and AB respectively, in the ratio 1:2. The objective is to find the barycentric
coordinates of D, E and F, and the area of triangle ∆DEF as a proportion
of triangle ∆ABC.

We can approach the problem using mass points. For example, if we assume
D is the centroid, all we have to do is determine the mass points that create
this situation. Then the barycentric coordinates of D are given by (11.8). We
proceed as follows.

The point D is on the intersection of lines CC ′ and AA′. Therefore, we
begin by placing a mass of 1 at C. Then, for line BC to balance at A′ a mass
of 2 must be placed at B. Similarly, for line AB to balance at C ′ a mass of 4
must be placed at A. This configuration is shown in Figure 11.20.

214 Mathematics for Computer Graphics

A

A¢

BC ¢

C

D

1 2

1

2

1

24

Fig. 11.20. The masses assigned to A, B and C to determine D.

The total mass is 7 (1 + 2 + 4), therefore

D =
4
7
A +

2
7
B +

1
7
C

The point E is on the intersection of lines BB′ and AA′. Therefore, we begin
by placing a mass of 1 at A. Then, for line CA to balance at B′ a mass of 2
must be placed at C. Similarly, for line BC to balance at A′ a mass of 4 must
be placed at B. This configuration is shown in Figure 11.21.

The total mass is still 7, therefore

E =
1
7
A +

4
7
B +

2
7
C

From the symmetry of the triangle we can state that

F =
2
7
A +

1
7
B +

4
7
C

A

A¢

B

B ¢

C

E

1

2

1

2

1

2

4

Fig. 11.21. The masses assigned to A, B and C to determine E.

11 Barycentric Coordinates 215

Thus we can locate the points D, E and F using the vector equations

D =
4
7
A +

2
7
B +

1
7
C

E =
1
7
A +

4
7
B +

2
7
C

F =
2
7
A +

1
7
B +

4
7
C (11.13)

The important feature of these equations is that the barycentric coordinates
of D, E and F are independent of A, B and C; they arise from the ratio used
to divide the triangle’s sides.

Although it was not the original intention, we can quickly explore what
the barycentric coordinates of D, E and F would be if the triangle’s sides had
been 1:3 instead of 1:2. Without repeating all of the above steps, we would
proceed as follows.

The point D is on the intersection of lines CC ′ and AA′. Therefore, we
begin by placing a mass of 1 at C. Then, for line BC to balance at A′ a mass
of 3 must be placed at B. Similarly, for line AB to balance at C ′ a mass of 9
must be placed at A. This configuration is shown in Figure 11.22.

The total mass is 13 (1 + 3 + 9), therefore

D =
9
13

A +
3
13

B +
1
13

C

E =
1
13

A +
9
13

B +
3
13

C

F =
3
13

A +
1
13

B +
9
13

C

We could even develop the general equations for a ratio 1:n. It is left to the
reader to show that

D =
n2

n2 + n + 1
A +

n

n2 + n + 1
B +

1
n2 + n + 1

C

A

A¢

BC ¢

C

D

1 3

1

3

1

39

Fig. 11.22. The masses assigned to A, B and C to determine D.

216 Mathematics for Computer Graphics

E =
1

n2 + n + 1
A +

n2

n2 + n + 1
B +

n

n2 + n + 1
C

F =
n

n2 + n + 1
A +

1
n2 + n + 1

B +
n2

n2 + n + 1
C

As a quick test for the above equations, let n = 1, which should make D, E
and F concurrent at the triangle’s centroid:

D =
1
3
A +

1
3
B +

1
3
C

E =
1
3
A +

1
3
B +

1
3
C

F =
1
3
A +

1
3
B +

1
3
C

which is rather reassuring.
Now let’s return to the final part of the problem and determine the area of

triangle ∆DEF in terms of ∆ABC. The strategy is to split triangle ∆ABC
into four triangles: ∆BCF, ∆CAD, ∆ABE and ∆DEF as shown in Figure
11.23.

Therefore

area∆ABC = area∆BCF + area∆CAD + area∆ABE + area∆DEF

and

1 =
area∆BCF

area∆ABC
+

area∆CAD

area∆ABC
+

area∆ABE

area∆ABC
+

area∆DEF

area∆ABC
(11.14)

But we have just discovered that the barycentric coordinates are intimately
connected with the ratios of triangles. For example, if F has barycentric co-

A

A′

BC′

B′

C

D

E

F

1 2

1

1

2

2

Fig. 11.23. Triangle ∆ABC divided into four triangles ∆ABE, ∆BCF, ∆CAD and
∆DEF.

11 Barycentric Coordinates 217

ordinates (rF , sF , tF) relative to the points A, B and C respectively, then

rF =
area∆BCF

area∆ABC

And if D has barycentric coordinates (rD, sD, tD) relative to the points A,
B and C respectively, then

sD =
area∆CAD

area∆ABC

Similarly, if E has barycentric coordinates (rE, sE, tE) relative to the points
A, B and C respectively, then

tE =
area∆ABE

area∆ABC

Substituting rF , sE and tD in (11.13) we obtain

1 = rF + sD + tE +
area∆DEF

area∆ABC

From (11.12) we see that

rF =
2
7

sD =
2
7

tE =
2
7

therefore
1 =

6
7

+
area∆DEF

area∆ABC

and
area∆DEF =

1
7
× area∆ABC

which is rather neat.
But just before we leave this example, let’s state a general expression for

the area∆DEF for a triangle whose sides are divided in the ratio 1:n. Once
again, I’ll leave it to the reader to prove that

area∆DEF =
n2 − 2n + 1
n2 + n + 1

× area∆ABC

Note that when n = 1, area∆DEF = 0, which is correct.
[Hint: The corresponding values of rF , sD and tE are n/(n2 + n + 1).]

11.7 Volumes

We have now seen that barycentric coordinates can be used to locate a scalar
within a 1D domain, a point within a 2D area, so it seems logical that the
description should extend to 3D volumes, which is the case.

218 Mathematics for Computer Graphics

P1
P2

P3

P4

X

Y

Z

P

p
v2

v3

Fig. 11.24. A tetrahedron.

To demonstrate this, consider the tetrahedron shown in Figure 11.24. Now
the volume of a tetrahedron is given by

V =
1
6

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
where [x1 y1 z1]T, [x2 y2 z2]T, and [x3 y3 z3]T are the three vectors extending
from the fourth vertex to the other three vertices. However, if we locate the
fourth vertex at the origin, (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) become
the coordinates of the three vertices.

Let’s locate a point P (xP , yP , zP) inside the tetrahedron with the follow-
ing barycentric definition

P = rP1 + sP2 + tP3 + uP4 (11.15)

where P,P1, P2, P3 and P4 are the position vectors for P, P1, P2, P3 and
P4 respectively.

The fourth barycentric term uP4 can be omitted as P4 has coordinates
(0,0,0).

Therefore, we can state that the volume of the tetrahedron formed by the
three vectors p,v2 and v3 is given by

V =
1
6

∣∣∣∣∣∣
xP yP zP

x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ (11.16)

Substituting (11.14) in (11.15) we obtain

V =
1
6

∣∣∣∣∣∣
rx1 + sx2 + tx3 ry1 + sy2 + ty3 rz1 + sz2 + tz3

x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ (11.17)

which expands to

11 Barycentric Coordinates 219

V =
1
6

[
y2z3(rx1 + sx2 + tx3) + x2y3(rz1 + sz2 + tz3) + x3z2(ry1 + sy2 + ty3)

−y3z2(rx1 + sx2 + tx3) − x3y2(rz1 + sz2 + tz3) − x2z3(ry1 + sy2 + ty3)

]

=
1
6

⎡
⎢⎣

r(x1y2z3 + x2y3z1 + x3y1z2 − x1y3z2 − x3y2z1 − x2y1z3)+

s(x2y2z3 + x2y3z2 + x3y1z2 − x2y3z2 − x3y1z2 − x2y2z3)+

t(x3y2z3 + x2y3z3 + x3y3z2 − x3y3z2 − x3y2z3 − x2y3z3)

⎤
⎥⎦

and simplifies to

V =
1
6
r

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
This states that the volume of the smaller tetrahedron is r times the volume
of the larger tetrahedron VT , where r is the barycentric coordinate modifying
the vertex not included in the volume. By a similar process we can develop
volumes for the other tetrahedra:

V (P, P2, P4, P3) = rVT

V (P, P1, P3, P4) = sVT

V (P, P1, P2, P4) = tVT

V (P, P1, P2, P3) = uVT

where r + s + t + u = 1.
Similarly, the barycentric coordinates of a point inside the volume sum to

unity.
Let’s test the above statements with an example.
Figure 11.25 shows a tetrahedron and a point P

(1
3 ,

1
3 ,

1
3

)
located within

its interior.
The volume of the tetrahedron VT is

VT =
1
6

∣∣∣∣∣∣
0 0 1
1 0 0
0 1 0

∣∣∣∣∣∣ =
1
6

P1
P2

P3

P4

X

Y

Z

P

11

1

Fig. 11.25. A tetrahedron.

220 Mathematics for Computer Graphics

r =
V [P, P2, P4, P3]

VT
=

6
6

∣∣∣∣∣∣∣∣∣∣∣

2
3

−1
3

−1
3

−1
3

−1
3

−1
3

−1
3

2
3

−1
3

∣∣∣∣∣∣∣∣∣∣∣
=

1
3

s =
V [P, P1, P3, P4]

VT
=

6
6

∣∣∣∣∣∣∣∣∣∣∣

−1
3

−1
3

2
3

−1
3

2
3

−1
3

−1
3

−1
3

−1
3

∣∣∣∣∣∣∣∣∣∣∣
=

1
3

t =
V [P, P1, P2, P4]

VT
=

6
6

∣∣∣∣∣∣∣∣∣∣∣

−1
3

−1
3

2
3

2
3

−1
3

−1
3

−1
3

−1
3

−1
3

∣∣∣∣∣∣∣∣∣∣∣
=

1
3

u =
V [P, P1, P2, P3]

VT
=

6
6

∣∣∣∣∣∣∣∣∣∣∣

−1
3

−1
3

2
3

2
3

−1
3

−1
3

−1
3

2
3

−1
3

∣∣∣∣∣∣∣∣∣∣∣
= 0

The barycentric coordinates (r, s, t, u) confirm that the point is located at
the centre of triangle ∆P1P2P3.

Note that the above determinants will create a negative volume if the
vector sequences are reversed.

11.8 Bézier Curves and Patches

In Chapter 9 we examined Bézier curves and surface patches which are based
on Bernstein polynomials:

Bn
i (t) =

(
n
i

)
ti(1 − t)n−i

We discovered that these polynomials create the quadratic terms

(1 − t)2 2t(1 − t) t2

and the cubic terms

(1 − t)3 3t(1 − t)2 3t2(1 − t) t3

11 Barycentric Coordinates 221

which are used as scalars to multiply sequences of control points to create
a parametric curve. Furthermore, these terms sum to unity, therefore they
are also another form of barycentric coordinates. The only difference between
these terms and the others described above is that they are controlled by a
common parameter t. Another property of Bézier curves and patches is that
they are constrained within the convex hull formed by the control points,
which is also a property of barycentric coordinates.

11.9 Summary

To summarize, barycentric coordinates are regularly used to determine:
1. How a value is divided into various ratios. For example, a scalar A is divided

into the ratios r :s:t using

r

r + s + t
A,

s

r + s + t
A and

t

r + s + t
A

2. The mid-point between two points A and B:

P =
1
2
A +

1
2
B

3. The centroid of triangle ∆ ABC :

P̄ =
1
3
A +

1
3
B +

1
3
C

4. A point on a line through two points A and B:

P = (1 − t)A + tB

5. Whether a point is inside or outside triangle ∆ ABC :

P = rA + sB + tC

P is inside or on the boundary of triangle ∆ ABC when 0 ≤ r, s, t ≤ 1,
otherwise it is outside.

6. Whether a point is inside a tetrahedron P1, P2, P3, P4:

P = rP1 + sP2 + tP3 + uP4

P is inside tetrahedron P1, P2, P3, P4 when 0 ≤ r, s, t, u ≤ 1, otherwise it is
outside.

7. Centres of gravity:

x̄ =

n∑
i=1

mixi

n∑
i=1

mi

ȳ =

n∑
i=1

miyi

n∑
i=1

mi

z̄ =

n∑
i=1

mizi

n∑
i=1

mi

where mi is a mass located at xi.

12
Worked Examples

This chapter examines a variety of problems encountered in computer graphics
and develops mathematical strategies for their solution. Such strategies may
not be the most efficient, however, they will provide the reader with a starting
point, which may be improved upon.

12.1 Calculate the Area of a Regular Polygon

Given a regular polygon with n sides, side length s, and radius r of the cir-
cumscribed circle, its area can be computed by dividing it into n isosceles
triangles and summing their total area.

Figure 12.1 shows one of the isosceles triangles OAB formed by an edge s
and the centre O of the polygon. From Figure 12.1 we observe that

1
2s

h
= tan

(π

n

)
therefore

h =
1
2
s cot

(π

n

)

area ∆ OAB =
1
2
sh =

1
4
s2 cot

(π

n

)
but there are n such triangles, therefore

area =
1
4
ns2 cot

(π

n

)

224 Mathematics for Computer Graphics

BA

r
h

O

2
s

n
p

2
s

s

Fig. 12.1. One of the isosceles triangles forming a regular polygon.

If we let s = 1 the following table shows the area for the first six polygons.

n Area
3 0.433
4 1
5 1.72
6 2.598
7 3.634
8 4.828

12.2 Calculate the Area of any Polygon

Figure 12.2 shows a polygon with the following vertices in counter-clockwise
sequence.

x 0 2 5 4 2
y 2 0 1 3 3

By inspection, the area is 9.5.
The area of a polygon is given by

area =
1
2

n−1∑
i=0

(
xiyi+1(mod n)−yixi+1(mod n)

)
area =

1
2
(0 × 0 + 2 × 1 + 5 × 3 + 4 × 3 + 2 × 2 − 2 × 2 − 0 × 5 − 1 × 4

−3 × 2 − 3 × 0)

area =
1
2
(33 − 14) = 9.5

12.3 Calculate the Dihedral Angle of a Dodecahedron

The dodecahedron is a member of the five Platonic solids, which are con-
structed from regular polygons. The dihedral angle is the internal angle
between two faces. Figure 12.3 shows a dodecahedron with one of its pen-
tagonal sides.

12 Worked Examples 225

1 2 3 4 5

1

2

3

4

X

Y

Fig. 12.2. A five-sided irregular polygon.

108�108�

72�

Fig. 12.3. A dodecahedron with one of its pentagonal sides.

X

Y

Z

P

P ′

v2

v1
g

Fig. 12.4. The dihedral angle γ between two pentagonal sides.

Figure 12.4 illustrates the geometry required to fold two pentagonal sides
through the dihedral angle γ.

The point P has coordinates

P (x, y, z) = (sin(72◦), 0,− cos(72◦))

226 Mathematics for Computer Graphics

and for simplicity, we will use a unit vector to represent an edge, therefore

‖v1‖ = ‖v2‖ = 1

The coordinates of the rotated point P, P ′ are given by the following transform⎡
⎣x′

y′

z′

⎤
⎦ =

⎡
⎣cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0
0 0 1

⎤
⎦

⎡
⎣ sin(72◦)

0
− cos(72◦)

⎤
⎦

where

x′ = cos(γ) sin(72◦)
y′ = sin(γ) sin(72◦)
z′ = − cos(72◦)

But

v1.v2 = ‖v1‖‖v2‖ cos(θ) = xx′ + yy′ + zz′

therefore

cos(θ) = cos(γ) sin2(72◦) + cos2(72◦)

but θ equals 108◦ (internal angle of a regular pentagon)
therefore

cos(γ) =
cos(108◦) − cos2(72◦)

sin2(72◦)
=

cos(72◦)
cos(72◦) − 1

The dihedral angle γ = 116.56505◦

A similar technique can be used to calculate the dihedral angles of the
other Platonic objects.

12.4 Vector Normal to a Triangle

Very often in computer graphics we have to calculate a vector normal to a
plane containing three points. The most effective tool to achieve this is the
vector product. For example, given three points P1 (5, 0, 0), P2 (0, 0, 5) and
P3 (10, 0, 5), we can create two vectors a and b as follows:

a =

⎡
⎣ x2 − x1

y2 − y1
z2 − z1

⎤
⎦ b =

⎡
⎣ x3 − x1

y3 − y1
z3 − z1

⎤
⎦

therefore

a = −5i + 5k b = 5i + 5k

12 Worked Examples 227

The normal vector n is given by

n = a × b =

∣∣∣∣∣∣∣
i j k

−5 0 5
5 0 5

∣∣∣∣∣∣∣ = 50j

12.5 Area of a Triangle using Vectors

The vector product is also useful in calculating the area of a triangle using
two of its sides as vectors. For example, using the same points and vectors in
the previous example

area =
1
2
|a × b| =

1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

i j k

−5 0 5
5 0 5

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =

1
2
||50j||

area = 25

12.6 General Form of the Line Equation from Two Points

The general form of the line equation is given by

ax + by + c = 0

and it may be required to compute this equation from two known points. For
example, Figure 12.5 shows two points P1(x1, y1) and P2(x2, y2) from which it
is possible to determine P(x, y).

X

Y

P1

P2

P

x1 x2x

y1

y2

y

Fig. 12.5. A line formed from two points P1 and P2.

228 Mathematics for Computer Graphics

From Figure 12.5

y − y1

x − x1
=

y2 − y1

x2 − x1
(x2 − x1)(y − y1) = (y2 − y1)(x − x1)

(y2 − y1)x − (y2 − y1)x1 = (x2 − x1)y − (x2 − x1)y1

(y2 − y1)x + (x1 − x2)y = x1y2 − x2y1

therefore

a = y2 − y1 b = x1 − x2 c = −(x1y1 − x2y1)

If the two points are P1(1, 0) and P2(3, 4) then

(4 − 0)x + (1 − 3)y − (1 × 4 − 3 × 0) = 0

and
4x − 2y − 4 = 0

or

2x − y − 2 = 0

12.7 Calculate the Angle between Two Straight Lines

Given two line equations it is possible to compute the angle between them
using the scalar product. For example, if the line equations are

a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

their normal vectors are n = a1i + b1j and m = a2i + b2j respectively
therefore

n.m = ‖n‖ ‖m‖ cos(α)

and the angle between the lines α is given by

α = cos−1
(

n.m
‖n‖ ‖m‖

)

Figure 12.6 shows two lines represented by

2x + 2y − 4 = 0

and
2x + 4y − 4 = 0

Therefore
α = cos−1

(
2 × 2 + 2 × 4√
22 + 22

√
22 + 42

)
= 18.435◦

12 Worked Examples 229

a

X

Y

Fig. 12.6. Two lines intersecting at an angle α.

Y

X

P1

P2

P3

Fig. 12.7. Three points on a common line.

12.8 Test If Three Points Lie On a Straight Line

Three points either create a triangle or lie on a straight line as shown in
Figure 12.7. To determine when this occurs we compare two vectors formed
from the points.
For example, given P1(x1, y1), P2(x2, y2), P3(x3, y3) and r =

−−→
P1P2 and s =

−−→
P1P3

the three points lie on a straight line when s = λr where λ is a scalar.
If the points are

P1 (0,−2) P2 (1,−1) P3 (4, 2)

then

r = i + j and s = 4i + 4j

and

s = 4r

therefore, the points lie on a straight line as confirmed by the diagram.

230 Mathematics for Computer Graphics

Another way is to compute ∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
which is twice the area of ∆P1P2P3. If this equals zero, the points must be
collinear.

12.9 Find the Position and Distance of the Nearest Point
on a Line to a Point

Suppose we have a line and some arbitrary point P, and we require to find
the nearest point on the line to P. Vector analysis provides a very elegant way
to solve such problems. Figure 12.8 shows the line and the point P and the
nearest point Q on the line. The nature of the geometry is such that the line
connecting P to Q is perpendicular to the reference line, which is exploited
in the analysis.
The objective is to determine the position vector q.

We start with the line equation

ax + by + c = 0

and declare Q(x, y) as the nearest point on the line to P.
The normal to the line must be

n = ai + bj

and the position vector for Q is

q = xi + yj

therefore
n.q = −c (12.1)

X

Y

P

Q

p

q r

n

O

Fig. 12.8. Q is the nearest point on the line to P.

12 Worked Examples 231

r is parallel to n, therefore
r = λn (12.2)

where λ is some scalar.
Taking the scalar product of (12.2)

n.r = λn.n (12.3)

but as

r = q − p (12.4)
n.r = n.q − n.p (12.5)

substituting (12.1) and (12.3) in (12.5) we obtain

λn.n = −c − n.p (12.6)

therefore
λ =

−(n.p + c)
n.n

From (12.4) we get
q = p + r (12.7)

substituting (12.2) in (12.7) we obtain the position vector for Q

q = p + λn

The distance PQ must be the magnitude of r :

PQ = ‖r‖ = ‖λn‖
Let’s test this result with an example where the answer can be predicted.

Figure 12.9 shows a line whose equation is x+y−1 = 0, and the associated
point P(1,1). By inspection, the nearest point is Q(1

2 ,
1
2) and the distance

PQ = 0.7071.
From the line equation

a = 1 b = 1 c = −1

therefore
λ = −2 − 1

2
= −1

2
therefore

xQ = xP + λxn = 1 − 1
2
× 1 =

1
2

yQ = yP + λyn = 1 − 1
2
× 1 =

1
2

The nearest point is Q(1
2 ,

1
2) and the distance is PQ = ‖λn‖ = 1

2 ‖i + j‖ =
0.7071

232 Mathematics for Computer Graphics

X

Y

O

Q

P

n

1

1

Fig. 12.9. Q is the nearest point on the line to P.

12.10 Position of a Point Reflected in a Line

Suppose that instead of finding the nearest point on the line we require the
reflection Q of P in the line. Once more, we set out to discover the position
vector for Q.

Figure 12.10 shows the vectors used in the analysis. We start with the line
equation

ax + by + c = 0

and declare T (x, y) as the nearest point on the line to O with t = xi + yj as
its position vector.

From the line equation
n = ai + bj

therefore
n.t = −c (12.8)

X

Y

O

Q

P
T

r + r′

r

t

q
p

n

r′

Fig. 12.10. The vectors required to find the reflection of P in the line.

12 Worked Examples 233

We note that r + r′ is orthogonal to n therefore

n.(r + r′) = 0

and
n.r + n.r′ = 0 (12.9)

We also note that p − q is parallel to n therefore

p − q = r − r′ = λn

where λ is some scalar therefore

λ =
r − r′

n
(12.10)

From the figure we note that
r = p − t (12.11)

substituting (12.8) in (12.11)

n.r = n.p − n.t = n.p + c (12.12)

substituting (12.9) and (12.12) in (12.10)

λ =
n.r − n.r′

n.n
=

2n.r
n.n

λ =
2(n.p + c)

n.n
and the position vector is

q = p − λn

Let’s again test this formula with a scenario that can be predicted in advance.
Given the line equation

x + y − 1 = 0

and the point P (1, 1) the reflection must be the origin, as shown in Figure 12.11.
Let’s confirm this prediction. From the line equation

a = 1 b = 1 c = −1

and

xP = 1 yP = 1

λ =
2 × (2 − 1)

2
= 1

therefore

xQ = xP − λxn = 1 − 1 × 1 = 0
yQ = yP − λyn = 1 − 1 × 1 = 0

and the reflection point is Q(0, 0).

234 Mathematics for Computer Graphics

X

Y

O

Q

P

1

1

Fig. 12.11. Q is the reflection of P in the line.

X

Y

ZT

v

t

c
C

r
qP

p
slv

q

Fig. 12.12. The vectors required to locate a possible intersection.

12.11 Calculate the Intersection of a Line and a Sphere

In ray tracing and ray casting it is necessary to detect whether a ray (line)
intersects objects within a scene. Such objects may be polygonal, constructed
from patches, or defined by equations. In this example, we explore the inter-
section between a line and a sphere.

There are three possible scenarios: the line intersects, touches or misses the
sphere. It just so happens, that the cosine rule proves very useful in setting
up a geometric condition that identifies the above scenarios, which are readily
solved using vector analysis.

Figure 12.12 shows a sphere with radius r located at C. The line is rep-
resented parametrically, which lends itself to this analysis. The objective, of
which, is to discover whether there are points in space that satisfy both the
line equation and the sphere equation. If there is a point, a position vector
will locate it.
The position vector for C is

c = xC i + yCj + zCk

and the equation of the line is

p = t + λv

12 Worked Examples 235

where λ is a scalar, and

‖v‖ = 1 (12.13)

For an intersection at P

‖q‖ = r or ‖q‖2 = r2 or ‖q‖2 − r2 = 0

Using the cosine rule

‖q‖2 = ‖λv‖2 + ‖s‖2 − 2‖λv‖‖s‖ cos(θ)
(12.14)

‖q‖2 = λ2‖v‖2 + ‖s‖2 − 2‖v‖‖s‖λ cos(θ)

substituting (12.13) in (12.14)

‖q‖2 = λ2 + ‖s‖2 − 2‖s‖λ cos(θ) (12.15)

identify cos(θ)

s.v = ‖s‖ ‖v‖ cos(θ)

therefore

cos(θ) =
s.v
‖s‖ (12.16)

substituting (12.16) in (12.15)

‖q‖2 = λ2 − 2s.vλ + ‖s‖2

therefore

‖q‖2 − r2 = λ2 − 2s.vλ + ‖s‖2 − r2 = 0 (12.17)

(12.17) is a quadratic where

λ = s.v ±
√

(s.v)2 − ‖s‖2 + r2 (12.18)

and

s = c − t

the discriminant of (12.18) determines whether the line intersects, touches or
misses the sphere.

The position vector for P is given by

p = t + λv

where

λ = s.v ±
√

(s.v)2 − ‖s‖2 + r2

and

s = c − t

236 Mathematics for Computer Graphics

For a miss condition

(s.v)2 − ‖s‖2 + r2 < 0

For a touch condition

(s.v)2 − ‖s‖2 + r2 = 0

For an intersect condition

(s.v)2 − ‖s‖2 + r2 > 0

To test these formulae we will create all three scenarios and show that the
equations are well behaved.

Figure 12.13 shows a sphere with three lines represented by their direction
vectors λv1, λv2 and λv3.

The sphere has radius r = 1 and is centred at C with position vector

c = i + j

whilst the three lines L1, L2 and L3 miss, touch and intersect the sphere
respectively.

The lines are of the form

p = t + λv

therefore

p1 = t1 + λv1 p2 = t2 + λv2 p3 = t3 + λv3

where

t1 = 2i v1 =
1√
2
i +

1√
2
j

t2 = 2i v2 = j

t3 = 2i v3 = − 1√
2
i +

1√
2
j

L1 L2
L3

X

Y

Z

lv2 lv1lv3

P3¢

P3 P2

C

r

T

t

c

Fig. 12.13. Three lines that miss, touch and intersect the sphere.

12 Worked Examples 237

and
c = i + j

Let’s substitute the lines in the original equations:

L1 : s = −i + j

(s.v)2 − ‖s‖2 + r2 = 0 − 2 + 1 = −1

the negative discriminant confirms a miss condition.

L2 : s = −i + j

(s.v)2 − ‖s‖2 + r2 = 1 − 2 + 1 = 0

the zero discriminant confirms a touch condition, therefore λ = 1 the touch
point is P2(2, 1, 0) which is correct.

L3 : s = −i + j

(s.v)2 − ‖s‖2 + r2 = 2 − 2 + 1 = 1

the positive discriminant confirms an intersect condition, therefore

λ =
2√
2
± 1 = 1 +

√
2 or

√
2 − 1

The intersection points are given by the two values of λ:
if λ = 1 +

√
2

xP = 2 +
(
1 +

√
2
)(

− 1√
2

)
= 1 − 1√

2

yP = 0 +
(
1 +

√
2
) 1√

2
= 1 +

1√
2

zP = 0

if λ =
√

2 − 1

xP = 1 +
(√

2 − 1
) (

− 1√
2

)
= 1 +

1√
2

yP = 0 +
(√

2 − 1
) 1√

2
= 1 − 1√

2
zP = 0

The intersection points are P3′
(
1 − 1√

2
, 1 + 1√

2
, 0

)
and P3

(
1 + 1√

2
, 1 − 1√

2
, 0

)
which are correct.

238 Mathematics for Computer Graphics

12.12 Calculate if a Sphere Touches a Plane

A sphere will touch a plane if the perpendicular distance from its centre to the
plane equals its radius. The geometry describing this condition is identical to
finding the position and distance of the nearest point on a plane to a point.

Figure 12.14 shows a sphere located at P with position vector p. A pote-
ntial touch condition occurs at Q, and the objective of the analysis is to
discover its position vector q. Given the following plane equation

ax + by + cz + d = 0

its surface normal is

n = ai + bj + ck

The nearest point Q on the plane to a point P is given by the position vector

q = p + λn (12.19)

where

λ = −n.p + d

n
.n

the distance

PQ = ‖λn‖
If P is the centre of the sphere with radius r, and position vector p the touch
point is also given by (12.19)
when

PQ = ‖λn‖ = r

Let’s test the above equations with a simple example, as shown in Figure 12.15.
Figure 12.15 shows a sphere with radius r = 1 and centred at P(1, 1, 1)

The plane equation is

y − 2 = 0

X

Y

Z

P

Q

p

q

n

r

Fig. 12.14. The vectors used to detect when a sphere touches a plane.

12 Worked Examples 239

X

Y

Z

P

Q

n

r

Fig. 12.15. A sphere touching a plane.

therefore

n = j

and

p = i + j + k

therefore

λ = −(1 − 2) = 1

which equals the sphere’s radius and therefore the sphere and plane touch.
The touch point is

xQ = 1 + 1 × 0 = 1
yQ = 1 + 1 × 1 = 2
zQ = 1 + 1 × 0 = 1

P(1,2,1) which is correct.

12.13 Summary

Unfortunately, problem solving is not always obvious, and it is possible to
waste hours of analysis simply because the objective of the solution has not
been well formulated. Hopefully, though, the reader has discovered some of
the strategies used in solving the above geometric problems, and will be able
to implement them in other scenarios. At the end of the day, practice makes
perfect.

13
Conclusion

In the previous 12 chapters I have attempted to introduce you to some of the
important elements of mathematics employed in computer graphics. I knew
from the start that this would be a challenge for two reasons: one was knowing
where to start, and the other was knowing where to stop. I assumed that most
readers would already be interested in computer animation, games, virtual
reality, and so on, and knew something about mathematics. So perhaps the
chapters on numbers, algebra and trigonometry provided a common starting
point.

The chapters on Cartesian coordinates, vectors, transforms, interpolation,
curves and patches are the real core of the book, but while revealing these
subjects I was always wondering when to stop. On the one hand, I could have
frustrated readers by stopping short of describing a subject completely, and
on the other hand lost readers by pursuing a subject to a level beyond the
book’s objective. Hopefully, I have managed to keep the right balance.

For many readers, what I have covered will be sufficient to enable them to
design programs and solve a wide range of problems. For others, the book will
provide a useful stepping stone to more advanced texts on mathematics. But
what I really hope that I have managed to show is that mathematics is not
that difficult, especially when it can be applied to an exciting subject such as
computer graphics.

References

Boyer, C.B. and Merzbach, U.C. (1989) A History of Mathematics. Wiley,
New York.

Foley et al. (1990) Computer Graphics: Principles and Practice.

Glassner et al. (1990) Gems.

Gullberg, J. (1997) Mathematics: From the Birth of Numbers. W. W. Norton,
New York.

Harris, J.W. and Stocker, H. (1998) Handbook of Mathematics and Compu-
tational Science. Springer-Verlag, New York.

Index

addition
quaternions, 91
vectors, 36

algebra, 11
algebraic laws, 12
matrices, 53
vectors, 31

analytic geometry, 149
angle/angles, 150

adjacent, 148
between a line and a plane, 189
between lines, 228
between planes, 188
between vectors, 40
complementary, 148
compound, 20
Euler, 79
exterior, 149
interior, 149
opposite, 148
pitch, 69
roll, 69
rotation, 69
supplementary, 148
yaw, 69

area/areas, 26, 48, 209
annulus, 155
circle, 154
ellipse, 156
irregular polygon, 223

area/areas (continued)
polygon, 223
sector, 156
segment, 157
triangle, 166, 209

associative law
algebra, 12

back-face detection, 43
barycentric coordinates, 193
basis functions, 138
Bernstein polynomials, 125

cubic, 130
Bézier curve, 125, 220

matrices, 133
patch, 141
quadratic, 129
recursive, 133

Bézier patch, 142, 220
cubic, 144
quadratic, 142

B-splines, 137
continuity, 139
non-uniform, 140
non-uniform rational, 141
uniform, 137

Cartesian coordinates, 23
Cartesian vector, 38
centroid, 193

246 Index

Ceva’s theorem, 193
circle/circles, 123, 156

area, 154
area of sector, 156
area of segment, 157
circumference, 154
equation, 123

column vector, 32
commutative law

algebra, 13
complex numbers, 7
compound-angle identities, 20
continuity, 139
control vertex, 129
convex hull, 208
coordinate system/systems, 23

barycentric, 193
Cartesian, 23
homogeneous, 57

cosecant, 18
cosine/cosines, 18

rule, 20
cotangent, 18
cross product, vectors, 44
cubic

Bézier curve, 130
Bézier patch, 144

curve/curves, 123
Bézier, 125, 220

determinant, 45, 56, 99
area properties, 102

dihedral angle, 224
direction cosines, 75
distributive law

algebra, 13
dodecahedron, 224

dihedral angle, 224
dot product, 41

ellipse, 124
equation, 124
parametric equation, 124

equation/equations
circle, 123
ellipse, 124
intersecting lines, 163, 173
plane, 175
quadratic, 14

equation/equations (continued)
second-degree, 132
straight line, 158, 172
third-degree, 132

equilateral triangle, 153
Euler angles, 67, 79
Euler’s rule, 29

Fibonnaci numbers, 1
function graphs, 24

gimbal lock, 70
golden section, 151

Hessian normal form, 160, 162

indices
laws of, 15
examples, 15

identity/identities
Pythagorean, 19
trigonometric, 20

intercept theorems, 150
integers, 6
interpolation, 107

cubic, 111
linear, 107, 134, 202
non-linear, 110
quaternions, 119
trigonometric, 110
vectors, 116

intersecting
line and a circle, 170
line and a plane, 191
line and a sphere, 234
lines, 163, 173
line segments, 163
planes, 183

intersection points, 163, 173
inverse trigonometric ratios, 19
irrational numbers, 6
isosceles triangle, 152

Lambert’s law, 42
lighting calculations, 42
line/lines

angle between, 228
intersecting a sphere, 234

Index 247

line/lines (continued)
three points, 229
two points, 227

linear interpolation, 134, 202
logarithms, 15

natural, 16
magnitude, vectors, 34
mass points, 196
matrix/matrices, 53

determinant, 56
identity in R

2, 63
identity in R

3, 90
orthogonal, 80
square, 100

median/medians, 150

natural logarithms, 16
natural numbers, 5
numbers, 5

complex, 7
even, 1
Fibonacci, 1
imaginary, 7
integer, 6
irrational, 6
natural, 5
odd, 1
prime, 6
rational, 6
real, 7

normal vector, 47, 226
NURBS, 141

parallelogram, 155
Pascal’s triangle, 125
perimeter relationships, 21
perspective projection, 103
pitch, 69
planar, 28

patch, 141
plane equations, 175

Cartesian, 176
from three points, 181
general form, 178
parametric form, 178

plane/planes, 175
angle between, 188
intersecting, 183
touching a sphere, 238

point/points
reflected in a line, 232

point on a line
nearest to a point, 230

point inside a triangle, 166
polygon/polygons, 156

area using angles, 223
area using Cartesian coordinates, 223
regular, 156

position vector, 37
prime numbers, 1, 6
product/products

scalar, 40, 41
vector, 44

Pythagorean
theorem, 27, 28

quadratic Bézier curve, 129
quadratic Bézier patch, 142
quadratic equation, 14
quadrilateral, 154
quaternions, 90

addition, 91
definition, 90
Hamilton’s rules, 91
interpolation, 119
inverse, 91
magnitude, 92
matrix, 96
multiplication, 91
pitch, 95
roll, 95
rotating a vector, 83
subtraction, 91
yaw, 95

radian, 17
rational numbers, 6
ratios and proportion , 195
real numbers, 7
regular

polygon/polygons, 156
right-hand rule, 47
rhomboid, see parallelogram
rhombus/rhombi, 155
roll, 69

scalar product, 40, 41
secant, 18

248 Index

sector
circle, 156
circle, area, 156

segment
circle, 157
circle, area, 157

sine, 18
rule, 20

space
camera, 77
image, 77
object, 77
partitioning, 161
world, 77

sphere touching a plane, 238
straight lines

angle between, 228
equation, 158, 172
from three points, 229
Hessian normal form, 160, 162

subtraction, vectors, 36
surface patch, 141

planar, 141
quadratic, 142

Thales, 154
theorem/theorems

Ceva, 193
intercept, 150
Pythagorean, 27, 28, 154
Thales, 154

transformations, 51, 66
affine, 64
change of axes in R

2

homogeneous, 57
reflection in R

2, 52, 59, 65
reflection in R

3, 73
rotation in R

2, 62
rotation in R

3, 67
rotation, axes in R

2, 76
scaling in R

2, 51, 58, 64
scaling in R

3, 66

transformations (continued)
shearing in R

2, 61
translation in R

2, 51, 58
translation in R

3, 66
trapezoid, 155
triangle/triangles, 151

area, 164, 166, 227
area, determinant, 164
centroid, 152
equilateral, 153
isosceles, 152
right-angled, 153
vector normal, 226

trigonometric
ratios, 18
inverse ratios, 19
relationships, 19

trigonometry, 17

unit vector, 37

vector/vectors, 31
addition, 36
Cartesian, 38
column, 32
dot product, 40
interpolation, 116
magnitude, 34
multiplication, 39
normal, 47
notation, 32
position, 37
product, 44
scalar product, 40
scaling, 36
subtraction, 36
tangent, 115
unit, 37

volume, 217
tetrahedron, 217

yaw, 69

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

